ترغب بنشر مسار تعليمي؟ اضغط هنا

On the metallicity dependence of crystalline silicates in oxygen-rich asymptotic giant branch stars and red supergiants

124   0   0.0 ( 0 )
 نشر من قبل Olivia Jones
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the occurrence of crystalline silicates in oxygen-rich evolved stars across a range of metallicities and mass-loss rates. It has been suggested that the crystalline silicate feature strength increases with increasing mass-loss rate, implying a correlation between lattice structure and wind density. To test this, we analyse Spitzer IRS and Infrared Space Observatory SWS spectra of 217 oxygen-rich asymptotic giant branch stars and 98 red supergiants in the Milky Way, the Large and Small Magellanic Clouds and Galactic globular clusters. These encompass a range of spectral morphologies from the spectrally-rich which exhibit a wealth of crystalline and amorphous silicate features to naked (dust-free) stars. We combine spectroscopic and photometric observations with the GRAMS grid of radiative transfer models to derive (dust) mass-loss rates and temperature. We then measure the strength of the crystalline silicate bands at 23, 28 and 33 microns. We detect crystalline silicates in stars with dust mass-loss rates which span over 3 dex, down to rates of ~10^-9 solar masses/year. Detections of crystalline silicates are more prevalent in higher mass-loss rate objects, though the highest mass-loss rate objects do not show the 23-micron feature, possibly due to the low temperature of the forsterite grains or it may indicate that the 23-micron band is going into absorption due to high column density. Furthermore, we detect a change in the crystalline silicate mineralogy with metallicity, with enstatite seen increasingly at low metallicity.



قيم البحث

اقرأ أيضاً

This paper presents a summary of four invited and twelve contributed presentations on asymptotic giant branch stars and red supergiants, given over the course of two afternoon splinter sessions at the 19th Cool Stars Workshop. It highlights both rece nt observations and recent theory, with some emphasis on high spatial resolution, over a wide range of wavelengths. Topics covered include 3D models, convection, binary interactions, mass loss, dust formation and magnetic fields.
Stars evolving along the Asymptotic Giant Branch can become Carbon-rich in the final part of their evolution. They replenish the inter-stellar medium with nuclear processed material via strong radiative stellar winds. The determination of the luminos ity function of these stars, even if far from being conclusive, is extremely important to test the reliability of theoretical models. In particular, strong constraints on the mixing treatment and the mass-loss rate can be derived. We present an updated Luminosity Function of Galactic Carbon Stars obtained from a re-analysis of available data already published in previous papers. Starting from available near- and mid-infrared photometric data, we re-determine the selection criteria. Moreover, we take advantage from updated distance estimates and Period-Luminosity relations and we adopt a new formulation for the computation of Bolometric Corrections. This leads us to collect an improved sample of carbon-rich sources from which we construct an updated Luminosity Function. The Luminosity Function of Galactic Carbon Stars peaks at magnitudes around -4.9, confirming the results obtained in a previous work. Nevertheless, the Luminosity Function presents two symmetrical tails instead of the larger high luminosity tail characterizing the former Luminosity Function. The derived Luminosity Function of Galactic Carbon Stars matches the indications coming from recent theoretical evolutionary Asymptotic Giant Branch models, thus confirming the validity of the choices of mixing treatment and mass-loss history. Moreover, we compare our new Luminosity Function with its counterpart in the Large Magellanic Cloud finding that the two distributions are very similar for dust-enshrouded sources, as expected from stellar evolutionary models. Finally, we derive a new fitting formula aimed to better determine Bolometric Corrections for C-stars.
A long debated issue concerning the nucleosynthesis of neutron-rich elements in Asymptotic Giant Branch (AGB) stars is the identification of the neutron source. We report intermediate-mass (4 to 8 solar masses) AGB stars in our Galaxy that are rubidi um-rich owing to overproduction of the long-lived radioactive isotope 87Rb, as predicted theoretically 40 years ago. This represents a direct observational evidence that the 22Ne(alpha,n)25Mg reaction must be the dominant neutron source in these stars. These stars then challenge our understanding of the late stages of the evolution of intermediate-mass stars and would promote a highly variable Rb/Sr environment in the early solar nebula.
166 - J. Nordhaus 2008
The available information on isotopic abundances in the atmospheres of low-mass Red Giant Branch (RGB) and Asymptotic Giant Branch (AGB) stars requires that episodes of extensive mixing occur below the convective envelope, reaching down to layers clo se to the hydrogen burning shell (Cool Bottom Processing). Recently cite{Busso:2007jw} suggested that dynamo-produced buoyant magnetic flux tubes could provide the necessary physical mechanisms and also supply sufficient transport rates. Here, we present an $alpha-Omega$ dynamo in the envelope of an RGB/AGB star in which shear and rotation drain via turbulent dissipation and Poynting flux. In this context, if the dynamo is to sustain throughout either phase, convection must resupply shear. Under this condition, volume-averaged, peak toroidal field strengths of $<B_phi>simeq3times10^3$ G (RGB) and $<B_phi>simeq5times10^3$ G (AGB) are possible at the base of the convection zone. If the magnetic fields are concentrated in flux tubes, the corresponding field strengths are comparable to those required by Cool Bottom Processing.
Thermally-Pulsing Asymptotic Giant Branch (TP-AGB) stars are relatively short lived (less than a few Myr), yet their cool effective temperatures, high luminosities, efficient mass-loss and dust production can dramatically effect the chemical enrichme nt histories and the spectral energy distributions of their host galaxies. The ability to accurately model TP-AGB stars is critical to the interpretation of the integrated light of distant galaxies, especially in redder wavelengths. We continue previous efforts to constrain the evolution and lifetimes of TP-AGB stars by modeling their underlying stellar populations. Using Hubble Space Telescope (HST) optical and near-infrared photometry taken of 12 fields of 10 nearby galaxies imaged via the ACS Nearby Galaxy Survey Treasury and the near-infrared HST/SNAP follow-up campaign, we compare the model and observed TP-AGB luminosity functions as well as the number ratio of TP-AGB to red giant branch stars. We confirm the best-fitting mass-loss prescription, introduced by Rosenfield et al. 2014, in which two different wind regimes are active during the TP-AGB, significantly improves models of many galaxies that show evidence of recent star formation. This study extends previous efforts to constrain TP-AGB lifetimes to metallicities ranging -1.59 < [Fe/H] < -0.56 and initial TP-AGB masses up to ~ 4 Msun, which include TP-AGB stars that undergo hot-bottom burning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا