ﻻ يوجد ملخص باللغة العربية
We study the effect of a single non-magnetic impurity in A$_{y}$Fe$_{2-x}$Se$_{2}$ (A=K, Rb, or Cs) superconductors by considering various pairing states based on a three-orbital model consistent with the photoemission experiments. The local density of states on and near the impurity site has been calculated by solving the Bogoliubov-de Gennes equations self-consistently. The impurity-induced in-gap bound states are found only for attractive impurity scattering potential, as in the cases of doping of Co or Ni, which is characterized by the strong particle-hole asymmetry, in the nodeless $d_{x^2-y^2}$ wave pairing state. This property may be used to probe the pairing symmetry of FeSe-based 122-type superconductors.
We show that only a few percentage of Sn doping at the Ba site on BaFe$_2$As$_2$, can cause electronic topological transition, namely, the Lifshitz transition. A hole like d$_{xy}$ band of Fe undergoes electron like transition due to 4% Sn doping. Li
The pairing symmetry is examined in highly electron-doped Ba(Fe$_{1-x}$Co$_x$As)$_2$ and A$_y$Fe$_2$Se$_2$ (with A=K, Cs) compounds, with similar crystallographic and electronic band structures. Starting from a phenomenological two-orbital model, we
We analyze antiferromagnetism and superconductivity in novel $Fe-$based superconductors within the itinerant model of small electron and hole pockets near $(0,0)$ and $(pi,pi)$. We argue that the effective interactions in both channels logarithmicall
The pairing mechanism in iron-based superconductors is believed to be unconventional, i.e. not phonon-mediated. The achieved transition temperatures Tc in these superconductors are still significantly below those of some of the cuprates, with the exc
Determination of the pairing symmetry in monolayer FeSe films on SrTiO3 is a requisite for understanding the high superconducting transition temperature in this system, which has attracted intense theoretical and experimental studies but remains cont