ترغب بنشر مسار تعليمي؟ اضغط هنا

An improved method for measuring muon energy using the truncated mean of dE/dx

90   0   0.0 ( 0 )
 نشر من قبل Sandra Miarecki
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined by measuring the specific energy loss (dE/dx) along the muons path and relating the dE/dx to the muon energy. Because high-energy muons (E_mu > 1 TeV) lose energy randomly, the spread in dE/dx values is quite large, leading to a typical energy resolution of 0.29 in log10(E_mu) for a muon observed over a 1 km path length in the IceCube detector. In this paper, we present an improved method that uses a truncated mean and other techniques to determine the muon energy. The muon track is divided into separate segments with individual dE/dx values. The elimination of segments with the highest dE/dx results in an overall dE/dx that is more closely correlated to the muon energy. This method results in an energy resolution of 0.22 in log10(E_mu), which gives a 26% improvement. This technique is applicable to any large water or ice detector and potentially to large scintillator or liquid argon detectors.

قيم البحث

اقرأ أيضاً

154 - G.Vianello 2017
Several experiments in high-energy physics and astrophysics can be treated as on/off measurements, where an observation potentially containing a new source or effect (on measurement) is contrasted with a background-only observation free of the effect (off measurement). In counting experiments, the significance of the new source or effect can be estimated with a widely-used formula from [LiMa], which assumes that both measurements are Poisson random variables. In this paper we study three other cases: i) the ideal case where the background measurement has no uncertainty, which can be used to study the maximum sensitivity that an instrument can achieve, ii) the case where the background estimate $b$ in the off measurement has an additional systematic uncertainty, and iii) the case where $b$ is a Gaussian random variable instead of a Poisson random variable. The latter case applies when $b$ comes from a model fitted on archival or ancillary data, or from the interpolation of a function fitted on data surrounding the candidate new source/effect. Practitioners typically use in this case a formula which is only valid when $b$ is large and when its uncertainty is very small, while we derive a general formula that can be applied in all regimes. We also develop simple methods that can be used to assess how much an estimate of significance is sensitive to systematic uncertainties on the efficiency or on the background. Examples of applications include the detection of short Gamma-Ray Bursts and of new X-ray or $gamma$-ray sources.
The Baikal Gigaton Volume Detector (Baikal-GVD) is a km$^3$-scale neutrino detector currently under construction in Lake Baikal, Russia. The detector consists of several thousand optical sensors arranged on vertical strings, with 36 sensors per strin g. The strings are grouped into clusters of 8 strings each. Each cluster can operate as a stand-alone neutrino detector. The detector layout is optimized for the measurement of astrophysical neutrinos with energies of $sim$ 100 TeV and above. Events resulting from charged current interactions of muon (anti-)neutrinos will have a track-like topology in Baikal-GVD. A fast $chi^2$-based reconstruction algorithm has been developed to reconstruct such track-like events. The algorithm has been applied to data collected in 2019 from the first five operational clusters of Baikal-GVD, resulting in observations of both downgoing atmospheric muons and upgoing atmospheric neutrinos. This serves as an important milestone towards experimental validation of the Baikal-GVD design. This analysis is limited to single-cluster data, favoring nearly-vertical tracks.
The geometric-mean method is often used to estimate the spatial resolution of a position-sensitive detector probed by tracks. It calculates the resolution solely from measured track data without using a detailed tracking simulation and without consid ering multiple Coulomb scattering effects. Two separate linear track fits are performed on the same data, one excluding and the other including the hit from the probed detector. The geometric mean of the widths of the corresponding exclusive and inclusive residual distributions for the probed detector is then taken as a measure of the intrinsic spatial resolution of the probed detector: $sigma=sqrt{sigma_{ex}cdotsigma_{in}}$. The validity of this method is examined for a range of resolutions with a stand-alone Geant4 Monte Carlo simulation that specifically takes multiple Coulomb scattering in the tracking detector materials into account. Using simulated as well as actual tracking data from a representative beam test scenario, we find that the geometric-mean method gives systematically inaccurate spatial resolution results. Good resolutions are estimated as poor and vice versa. The more the resolutions of reference detectors and probed detector differ, the larger the systematic bias. An attempt to correct this inaccuracy by statistically subtracting multiple-scattering effects from geometric-mean results leads to resolutions that are typically too optimistic by 10-50%. This supports an earlier critique of this method based on simulation studies that did not take multiple scattering into account.
A technique for improving the momentum resolution for low momentum charged particles in few layer silicon based trackers is presented. The particle momenta are determined from the measured Landau dE/dx distribution and the Bethe-Bloch formula in the 1/beta^2 region. It is shown that a factor of two improvement of the momentum determination is achieved as compared to standard track fitting methods. This improvement is important in large scale heavy ion experiments which cover the low transverse momentum spectra using stand-alone silicon tracking devices with a few planes like the ones used in STAR at RHIC and ALICE at LHC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا