ترغب بنشر مسار تعليمي؟ اضغط هنا

The Golden Channel at a Neutrino Factory revisited: improved sensitivities from a Magnetised Iron Neutrino Detector

110   0   0.0 ( 0 )
 نشر من قبل Paul Soler
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper describes the performance and sensitivity to neutrino mixing parameters of a Magnetised Iron Neutrino Detector (MIND) at a Neutrino Factory with a neutrino beam created from the decay of 10 GeV muons. Specifically, it is concerned with the ability of such a detector to detect muons of the opposite sign to those stored (wrong-sign muons) while suppressing contamination of the signal from the interactions of other neutrino species in the beam. A new more realistic simulation and analysis, which improves the efficiency of this detector at low energies, has been developed using the GENIE neutrino event generator and the GEANT4 simulation toolkit. Low energy neutrino events down to 1 GeV were selected, while reducing backgrounds to the $10^{-4}$ level. Signal efficiency plateaus of ~60% for $ u_mu$ and ~70% for $bar{ u}_mu$ events were achieved starting at ~5 GeV. Contamination from the $ u_murightarrow u_tau$ oscillation channel was studied for the first time and was found to be at the level between 1% and 4%. Full response matrices are supplied for all the signal and background channels from 1 GeV to 10 GeV. The sensitivity of an experiment involving a MIND detector of 100 ktonnes at 2000 km from the Neutrino Factory is calculated for the case of $sin^2 2theta_{13}sim 10^{-1}$. For this value of $theta_{13}$, the accuracy in the measurement of the CP violating phase is estimated to be $Delta delta_{CP}sim 3^circ - 5^circ$, depending on the value of $delta_{CP}$, the CP coverage at $5sigma$ is 85% and the mass hierarchy would be determined with better than $5sigma$ level for all values of $delta_{CP}$.



قيم البحث

اقرأ أيضاً

116 - A. Bross , R. Wands , R. Bayes 2013
A neutrino factory has unparalleled physics reach for the discovery and measurement of CP violation in the neutrino sector. A far detector for a neutrino factory must have good charge identification with excellent background rejection and a large mas s. An elegant solution is to construct a magnetized iron neutrino detector (MIND) along the lines of MINOS, where iron plates provide a toroidal magnetic field and scintillator planes provide 3D space points. In this report, the current status of a simulation of a toroidal MIND for a neutrino factory is discussed in light of the recent measurements of large $theta_{13}$. The response and performance using the 10 GeV neutrino factory configuration are presented. It is shown that this setup has equivalent $delta_{CP}$ reach to a MIND with a dipole field and is sensitive to the discovery of CP violation over 85% of the values of $delta_{CP}$.
In response to the growing interest in building a Neutrino Factory to produce high intensity beams of electron- and muon-neutrinos and antineutrinos, in October 1999 the Fermilab Directorate initiated two six-month studies. The first study, organized by N. Holtkamp and D. Finley, was to investigate the technical feasibility of an intense neutrino source based on a muon storage ring. This design study has produced a report in which the basic conclusion is that a Neutrino Factory is technically feasible, although it requires an aggressive R&D program. The second study, which is the subject of this report, was to explore the physics potential of a Neutrino Factory as a function of the muon beam energy and intensity, and for oscillation physics, the potential as a function of baseline.
We examine the prospects of detecting an analogous process of neutrinoless double beta decay at a neutrino factory from a high energy muon storage ring. Limits from LEP experiments, neutrinoless double beta decay as well as from global fits have to b e incorporated and severely restrict the results. We investigate what limits on light and heavy effective Majorana neutrino masses can be obtained and compare them with existing ones. Discussed are also contributions from right-handed neutrinos and purely right-handed interactions. Other ``new physics contributions to the same final state might produce large event numbers.
The primary goal of the Long-Baseline Neutrino Experiment (LBNE) is to measure the neutrino mixing matrix parameters. The design, optimized to search for CP violation and to determine the neutrino mass hierarchy, includes a large $mathcal{O}(10$ kt) Liquid Argon Time Projection Chamber (LAr TPC) at 1300 km downstream of a wide-band neutrino beam. A brief introduction to the neutrino mixing parameters will be followed by a discussion of sensitivity study analysis methods and a summary of the results for LBNE. The studies include comparisons with the Tokai-to-Kamioka (T2K) and NuMI Off-axis electron-neutrino Appearance (NO$ u$A) experiments as well as combined sensitivities. Finally, the impact of including a realistic set of systematic uncertainties will be presented.
We upgrade the study of the physical reach of a Neutrino Factory considering the possibility to distinguish a three (active) neutrino oscillation scenario from the scenario in which a light sterile neutrino is also present. The distinction is easily performed in the so--called 2+2 scheme, but also in the more problematic 3+1 scheme it can be attained in some regions of the parameter space. We also discuss the CP violating phase determination, showing that the effects of a large phase in the three--neutrino theory cannot be reproduced in a four--neutrino, CP conserving, model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا