ﻻ يوجد ملخص باللغة العربية
We present Spitzer IRS spectra of four carbon stars located in the Galactic Halo and the thick disc. The spectra display typical features of carbon stars with SiC dust emission and C$_2$H$_2$ molecular absorption. Dust radiative transfer models and infrared colors enable us to determine the dust production rates for these stars whilst prior CO measurements yield expansion velocities and total mass-loss rates. The gas properties (low expansion velocities (around 7 km/s) and strong C$_2$H$_2$ molecular absorption bands) are consistent with the stars being metal-poor. However the dust content of these stars (strong SiC emission bands) is very similar to what is observed in metal-rich carbon stars. The strong SiC emission may indicate that the carbon stars derive from a metal-rich population, or that these AGB stars produce silicon. The origin of the halo carbon stars is not known. They may be extrinsinc halo stars belonging to the halo population, they may have been accreted from a satellite galaxy such as the Sagittarius Dwarf Spheroidal Galaxy, or they may be escapees from the galactic disk. If the stars are intrinsically metal-rich, an origin in the disc would be most likely. If an $alpha$-element enhancement can be confirmed, it would argue for an origin in the halo (which is known to be $alpha$-enhanced) or a Galactic satellite.
New infrared spectra of 33 Galactic carbon stars from FORCAST on SOFIA reveal strong connections between stellar pulsations and the dust and molecular chemistry in their circumstellar shells. A sharp boundary in overall dust content, which predominan
Understanding the evolution of carbon and iron in the Milky Ways halo is of importance because these two elements play crucial roles constraining star formation, Galactic assembly, and chemical evolution in the early Universe. Here, we explore the sp
Detailed spectroscopic studies of metal-poor halo stars have highlighted the important role of carbon-enhanced metal-poor (CEMP) stars in understanding the early production and ejection of carbon in the Galaxy and in identifying the progenitors of th
We use deep Herschel PACS and SPIRE observations in GOODSS, GOODSN and COSMOS to estimate the average dust mass (Mdust) of galaxies on a redshift-stellar mass (Mstar)-SFR grid. We study the scaling relations between Mdust, Mstar and SFR at z<=2.5. No
Carbon-enhanced metal-poor (CEMP) stars span a wide range of stellar populations, from bona fide second-generation stars to later forming stars that provide excellent probes of, e.g., binary mass transfer. Here we analyse 11 metal-poor stars of which