ترغب بنشر مسار تعليمي؟ اضغط هنا

The dust and gas content of carbon stars toward the Galactic Halo

311   0   0.0 ( 0 )
 نشر من قبل Eric Lagadec
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Spitzer IRS spectra of four carbon stars located in the Galactic Halo and the thick disc. The spectra display typical features of carbon stars with SiC dust emission and C$_2$H$_2$ molecular absorption. Dust radiative transfer models and infrared colors enable us to determine the dust production rates for these stars whilst prior CO measurements yield expansion velocities and total mass-loss rates. The gas properties (low expansion velocities (around 7 km/s) and strong C$_2$H$_2$ molecular absorption bands) are consistent with the stars being metal-poor. However the dust content of these stars (strong SiC emission bands) is very similar to what is observed in metal-rich carbon stars. The strong SiC emission may indicate that the carbon stars derive from a metal-rich population, or that these AGB stars produce silicon. The origin of the halo carbon stars is not known. They may be extrinsinc halo stars belonging to the halo population, they may have been accreted from a satellite galaxy such as the Sagittarius Dwarf Spheroidal Galaxy, or they may be escapees from the galactic disk. If the stars are intrinsically metal-rich, an origin in the disc would be most likely. If an $alpha$-element enhancement can be confirmed, it would argue for an origin in the halo (which is known to be $alpha$-enhanced) or a Galactic satellite.



قيم البحث

اقرأ أيضاً

New infrared spectra of 33 Galactic carbon stars from FORCAST on SOFIA reveal strong connections between stellar pulsations and the dust and molecular chemistry in their circumstellar shells. A sharp boundary in overall dust content, which predominan tly measures the amount of amorphous carbon, separates the semi-regular and Mira variables, with the semi-regulars showing little dust in their spectra and the Miras showing more. In semi-regulars, the contribution from SiC dust increases rapidly as the overall dust content grows, but in Miras, the SiC dust feature grows weaker as more dust is added. A similar dichotomy is found with the absorption band from CS at $sim$7.3 $mu$m, which is generally limited to semi-regular variables. Observationally, these differences make it straightforward to distinguish semi-regular and Mira variables spectroscopically without the need for long-term photometric observations or knowledge of their distances. The rapid onset of strong SiC emission in Galactic carbon stars in semi-regulars variables points to a different dust-condensation process before strong pulsations take over. The break in the production of amorphous carbon between semi-regulars and Miras seen in the Galactic sample is also evident in Magellanic carbon stars, linking strong pulsations in carbon stars to the strong mass-loss rates which will end their lives as stars across a wide range of metallicities.
Understanding the evolution of carbon and iron in the Milky Ways halo is of importance because these two elements play crucial roles constraining star formation, Galactic assembly, and chemical evolution in the early Universe. Here, we explore the sp atial distributions of carbonicity, [C/Fe], and metallicity, [Fe/H], of the halo system based on medium-resolution ($R sim$ 1,300) spectroscopy of $sim$58,000 stars in the Southern Hemisphere from the AAOmega Evolution of Galactic Structure (AEGIS) survey. The AEGIS carbonicity map exhibits a positive gradient with distance, as similarly found for the Sloan Digital Sky Survey (SDSS) carbonicity map of Lee et al. The metallicity map confirms that [Fe/H] decreases with distance, from the inner halo to the outer halo. We also explore the formation and chemical-evolution history of the halo by considering the populations of carbon-enhanced metal-poor (CEMP) stars present in the AEGIS sample. The cumulative and differential frequencies of CEMP-no stars (as classified by their characteristically lower levels of absolute carbon abundance, $A$(C) $leq$ 7.1 for sub-giants and giants) increases with decreasing metallicity, and is textit{substantially higher than previous determinations} for CEMP stars as a whole. In contrast, that of CEMP-$s$ stars (with higher $A$(C)), remains almost flat, at a value $sim$10%, in the range $-,4.0 lesssim$ [Fe/H] $lesssim-$2.0. The distinctly different behaviors of the CEMP-no and CEMP-$s$ stars relieve the tension with population-synthesis models assuming a binary mass-transfer origin, which previously struggled to account for the higher reported frequencies of CEMP stars, taken as a whole, at low metallicity.
Detailed spectroscopic studies of metal-poor halo stars have highlighted the important role of carbon-enhanced metal-poor (CEMP) stars in understanding the early production and ejection of carbon in the Galaxy and in identifying the progenitors of th e CEMP stars among the first stars formed after the Big Bang. Recent work has also classified the CEMP stars by absolute carbon abundance, A(C), into high- and low-C bands, mostly populated by binary and single stars, respectively. Our aim is to determine the frequency and orbital parameters of binary systems among the CEMP-s stars, which exhibit strong enhancements of neutron-capture elements associated with the s-process. This allows us to test whether local mass transfer from a binary companion is necessary and sufficient to explain their dramatic carbon excesses. Eighteen of the 22 stars exhibit clear orbital motion, yielding a binary frequency of 82+-10%, while four stars appear to be single (18+-10%). We thus confirm that the binary frequency of CEMP-s stars is much higher than for normal metal-poor giants, but not 100% as previously claimed. Secure orbits are determined for 11 of the binaries and provisional orbits for six long-period systems (P > 3,000 days), and orbital circularisation time scales are discussed. The conventional scenario of local mass transfer from a former AGB binary companion does appear to account for the chemical composition of most CEMP-s stars. However, the excess of C and s-process elements in some single CEMP-s stars was apparently transferred to their natal clouds by an external (distant) source. This finding has important implications for our understanding of carbon enrichment in the early Galactic halo and some high-redshift DLA systems, and of the mass loss from extremely metal-poor AGB stars. Abridged.
We use deep Herschel PACS and SPIRE observations in GOODSS, GOODSN and COSMOS to estimate the average dust mass (Mdust) of galaxies on a redshift-stellar mass (Mstar)-SFR grid. We study the scaling relations between Mdust, Mstar and SFR at z<=2.5. No clear evolution of Mdust is observed at fixed SFR and Mstar. We find a tight correlation between SFR and Mdust, likely a consequence of the Schmidt-Kennicutt (S-K) law. The Mstar-Mdust correlation observed by previous works flattens or sometimes disappears when fixing the SFR. Most of it likely derives from the combination of the Mdust-SFR and Mstar-SFR correlations. We then investigate the gas content as inferred by converting Mdust by assuming that the dust/gas ratio scales linearly with the gas metallicity. All galaxies in the sample follow, within uncertainties, the same SFR-Mgas relation (integrated S-K law), which broadly agrees with CO-based results for the bulk of the population, despite the completely different approaches. The majority of galaxies at z~2 form stars with an efficiency (SFE=SFR/Mgas) ~5 times higher than at z~0. It is not clear what fraction of such variation is an intrinsic redshift evolution and what fraction arises from selection effects. The gas fraction (fgas) decreases with Mstar and increases with SFR, and does not evolve with z at fixed Mstar and SFR. We explain these trends by introducing a universal relation between fgas, Mstar and SFR, non-evolving out to z~2.5. Galaxies move across this relation as their gas content evolves in time. We use the 3D fundamental fgas-Mstar-SFR relation and the redshift evolution of the Main Sequence to estimate the evolution of fgas in the average population of galaxies as a function of z and Mstar, and we find evidence a downsizing scenario.
Carbon-enhanced metal-poor (CEMP) stars span a wide range of stellar populations, from bona fide second-generation stars to later forming stars that provide excellent probes of, e.g., binary mass transfer. Here we analyse 11 metal-poor stars of which 10 are CEMP stars. Based on high signal-to-noise (SNR) X-Shooter spectra, we derive abundances of 20 elements (C, N, O, Na, Mg, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Sr, Y, Ba, La, Ce, Pr, Nd, Eu). From the high SNR spectra, we trace the chemical contribution of the rare earth elements (REE) from various production sites, finding a preference for metal-poor low-mass AGB stars of 1.5Mo in CEMP-s stars, while CEMP-r/s stars may indicate a more massive AGB contribution (2-5Mo). A contribution from the r-process - possibly from neutron star mergers (NSM), is also detectable in the REE abundances, especially in the CEMP-r/s. Combining spectra with Gaia DR2 astrometric data indicates that all but one star in our sample (and most literature stars) belong to the Galactic halo. They exhibit a median orbital eccentricity of 0.7, and are found on both pro- and retrograde orbits. The orbital parameters of CEMP-no and CEMP4s stars are remarkably similar in the 98 stars we study. A special CEMP-no star, with very low Sr and Ba content, possesses the most eccentric orbit among the stars in our sample, passing close to the Galactic centre. Finally, we propose an improved scheme to sub-classify the CEMP stars, making use of the Sr$/$Ba ratio, which can also be used to separate very metal-poor stars from CEMP stars in 93 stars in the metallicity range $-4.2<$[Fe/H]$<-2$. The Sr/Ba ratio can also be used for distinguishing CEMP-s,-r/s and -no stars. The Sr/Ba ratio is also a powerful astro-nuclear indicator, as AGB stars exhibit very different Sr/Ba ratios, compared to fast rotating massive stars and NSM, and it is fairly unbiased by NLTE and 3D corrections.(abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا