ترغب بنشر مسار تعليمي؟ اضغط هنا

Size and location of radish 1 chromosome regions carrying the fertility restorer Rfk1 gene in spring turnip rape

227   0   0.0 ( 0 )
 تاريخ النشر 2012
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In spring turnip rape (Brassica rapa L. spp. oleifera) the most promising F1 hybrid system would be the Ogu-INRA CMS/Rf system. A Kosena fertility restorer gene Rfk1, homologue of the Ogura restorer gene Rfo, was successfully transferred from oilseed rape into turnip rape and that restored the fertility in female lines carrying Ogura cms. The trait was, however, unstable in subsequent generations. The physical localization of the radish chromosomal region carrying the Rfk1 gene was investigated using 8 GISH (genomic in situ hybridization) and BAC-FISH (bacterial artificial chromosome fluorescence in situ hybridization) methods. The metaphase chromosomes were hybridized using radish DNA as the genomic probe and BAC64 probe, which is linked with Rfo gene. Both probes showed a signal in the chromosome spreads of the restorer line 4021-2 Rfk of turnip rape but not in the negative control line 4021B. The GISH analyses clearly showed that the turnip rape restorer plants were either monosomic (2n=2x=20+1R) or disomic (2n=2x=20+2R) addition lines with one or two copies of a single alien chromosome region originating from radish. In the BAC-FISH analysis, double dot signals were detected in sub-terminal parts of the radish chromosome arms showing that the fertility restorer gene Rfk1 was located in this additional radish chromosome. Detected disomic addition lines were found to be unstable for turnip rape hybrid production. Using the BAC-FISH analysis, weak signals were sometimes visible in two chromosomes of turnip rape and a homologous region of Rfk1 in chromosome 9 of the B. rapa A genome was verified with BLAST analysis. In the future this homologous area in A genome could be substituted with radish chromosome area carrying the Rfk1 gene.



قيم البحث

اقرأ أيضاً

108 - Todd Holden , JianMin Ye 2014
All genes on the human Y-chromosome were studied using fractal dimension and Shannon entropy. Clear outlier clusters were identified. Among these were 6 sequences that have since been withdrawn as CDSs and 1 additional sequence that is not in the cur rent assembly. A methodology for ranking the sequences based on deviation from average values of FD and SE was developed. The group of sequences scored among the 10% largest deviations had abnormally high likelihood to be from centromeric or pseudoautosomal regions and low likelihood to be from X-chromosome transposed regions. lncRNA sequences were also enriched among the outliers. In addition, the number of expressed genes previously identified for evolutionary study tended to not have large deviations from the average. Keywords: Y-chromosome; Shannon di-nucleotide entropy; fractal dimension; centromeric genes; gene degredation; lncRNA
The classification of life should be based upon the fundamental mechanism in the evolution of life. We found that the global relationships among species should be circular phylogeny, which is quite different from the common sense based upon phylogene tic trees. The genealogical circles can be observed clearly according to the analysis of protein length distributions of contemporary species. Thus, we suggest that domains can be defined by distinguished phylogenetic circles, which are global and stable characteristics of living systems. The mechanism in genome size evolution has been clarified; hence main component questions on C-value enigma can be explained. According to the correlations and quasi-periodicity of protein length distributions, we can also classify life into three domains.
We have simulated the evolution of sexually reproducing populations composed of individuals represented by diploid genomes. A series of eight bits formed an allele occupying one of 128 loci of one haploid genome (chromosome). The environment required a specific activity of each locus, this being the sum of the activities of both alleles located at the corresponding loci on two chromosomes. This activity is represented by the number of bits set to zero. In a constant environment the best fitted individuals were homozygous with alleles activities corresponding to half of the environment requirement for a locus (in diploid genome two alleles at corresponding loci produced a proper activity). Changing the environment under a relatively low recombination rate promotes generation of more polymorphic alleles. In the heterozygous loci, alleles of different activities complement each other fulfilling the environment requirements. Nevertheless, the genetic pool of populations evolves in the direction of a very restricted number of complementing haplotypes and a fast changing environment kills the population. If simulations start with all loci heterozygous, they stay heterozygous for a long time.
In unicellular organisms such as bacteria the same acquired mutations beneficial in one environment can be restrictive in another. However, evolving Escherichia coli populations demonstrate remarkable flexibility in adaptation. The mechanisms sustain ing genetic flexibility remain unclear. In E. coli the transcriptional regulation of gene expression involves both dedicated regulators binding specific DNA sites with high affinity and also global regulators - abundant DNA architectural proteins of the bacterial chromoid binding multiple low affinity sites and thus modulating the superhelical density of DNA. The first form of transcriptional regulation is dominantly pairwise and specific, representing digitial control, while the second form is (in strength and distribution) continuous, representing analog control. Here we look at the properties of effective networks derived from significant gene expression changes under variation of the two forms of control and find that upon limitations of one type of control (caused e.g. by mutation of a global DNA architectural factor) the other type can compensate for compromised regulation. Mutations of global regulators significantly enhance the digital control; in the presence of global DNA architectural proteins regulation is mostly of the analog type, coupling spatially neighboring genomic loci; together our data suggest that two logically distinct types of control are balancing each other. By revealing two distinct logical types of control, our approach provides basic insights into both the organizational principles of transcriptional regulation and the mechanisms buffering genetic flexibility. We anticipate that the general concept of distinguishing logical types of control will apply to many complex biological networks.
Drosophila Y chromosomes are composed entirely of silent heterochromatin, while male X chromosomes have highly accessible chromatin and are hypertranscribed due to dosage compensation. Here, we dissect the molecular mechanisms and functional pressure s driving heterochromatin formation and dosage compensation of the recently formed neo-sex chromosomes of Drosophila miranda. We show that the onset of heterochromatin formation on the neo-Y is triggered by an accumulation of repetitive DNA. The neo-X has evolved partial dosage compensation and we find that diverse mutational paths have been utilized to establish several dozen novel binding consensus motifs for the dosage compensation complex on the neo-X, including simple point mutations at pre-binding sites, insertion and deletion mutations, microsatellite expansions, or tandem amplification of weak binding sites. Spreading of these silencing or activating chromatin modifications to adjacent regions results in massive mis-expression of neo-sex linked genes, and little correspondence between functionality of genes and their silencing on the neo-Y or dosage compensation on the neo-X. Intriguingly, the genomic regions being targeted by the dosage compensation complex on the neo-X and those becoming heterochromatic on the neo-Y show little overlap, possibly reflecting different propensities along the ancestral chromosome to adopt active or repressive chromatin configurations. Our findings have broad implications for current models of sex chromosome evolution, and demonstrate how mechanistic constraints can limit evolutionary adaptations. Our study also highlights how evolution can follow predictable genetic trajectories, by repeatedly acquiring the same 21-bp consensus motif for recruitment of the dosage compensation complex, yet utilizing a diverse array of random mutational changes to attain the same phenotypic outcome.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا