ترغب بنشر مسار تعليمي؟ اضغط هنا

A GPU-Computing Approach to Solar Stokes Profile Inversion

201   0   0.0 ( 0 )
 نشر من قبل Brian Harker
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new computational approach to the inversion of solar photospheric Stokes polarization profiles, under the Milne-Eddington model, for vector magnetography. Our code, named GENESIS (GENEtic Stokes Inversion Strategy), employs multi-threaded parallel-processing techniques to harness the computing power of graphics processing units GPUs, along with algorithms designed to exploit the inherent parallelism of the Stokes inversion problem. Using a genetic algorithm (GA) engineered specifically for use with a GPU, we produce full-disc maps of the photospheric vector magnetic field from polarized spectral line observations recorded by the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectromagnetograph (VSM) instrument. We show the advantages of pairing a population-parallel genetic algorithm with data-parallel GPU-computing techniques, and present an overview of the Stokes inversion problem, including a description of our adaptation to the GPU-computing paradigm. Full-disc vector magnetograms derived by this method are shown, using SOLIS/VSM data observed on 2008 March 28 at 15:45 UT.



قيم البحث

اقرأ أيضاً

152 - T. A. Carroll , M. Kopf , 2008
The major challenges for a fully polarized radiative transfer driven approach to Zeeman-Doppler imaging are still the enormous computational requirements. In every cycle of the iterative interplay between the forward process (spectral synthesis) and the inverse process (derivative based optimization) the Stokes profile synthesis requires several thousand evaluations of the polarized radiative transfer equation for a given stellar surface model. To cope with these computational demands and to allow for the incorporation of a full Stokes profile synthesis into Doppler- and Zeeman-Doppler imaging applications as well as into large scale solar Stokes profile
Accurate inference of solar meridional flow is of crucial importance for the understanding of solar dynamo process. Wave travel times, as measured on the surface, will change if the waves encounter perturbations e.g. in the sound speed or flows, as t hey propagate through the solar interior. Using functions called sensitivity kernels, we may image the underlying anomalies that cause measured shifts in travel times. The inference of large-scale structures e.g meridional circulation requires computing sensitivity kernels in spherical geometry. Mandal et al. (2017) have computed such spherical kernels in the limit of the first-Born approximation. In this work, we perform an inversion for meridional circulation using travel-time measurements obtained from 6 years of SDO/HMI data and those sensitivity kernels. We enforce mass conservation by inverting for a stream function. The number of free parameters is reduced by projecting the solution on to cubic B-splines in radius and derivatives of the Legendre-polynomial basis in latitude, thereby improving the condition number of the inverse problem. We validate our approach for synthetic observations before performing the actual inversion. The inversion suggests a single-cell profile with the return-flow occurring at depths below 0.78 $R_odot$.
Quantitative thermodynamical, dynamical and magnetic properties of the solar and stellar plasmas are obtained by interpreting their emergent non-polarized and polarized spectrum. This inference requires the selection of a set of spectral lines partic ularly sensitive to the physical conditions in the plasma and a suitable parametric model of the solar/stellar atmosphere. Nonlinear inversion codes are then used to fit the model to the observations. However, the presence of systematic effects like nearby or blended spectral lines, telluric absorption or incorrect correction of the continuum, among others, can strongly affect the results. We present an extension to current inversion codes that can deal with these effects in a transparent way. The resulting algorithm is very simple and can be applied to any existing inversion code with the addition of a few lines of code as an extra step in each iteration.
All three components of the current density are required to compute the heating rate due to free magnetic energy dissipation. Here we present a first test of a new model developed to determine if the times of increases in the resistive heating rate i n active region (AR) photospheres are correlated with the subsequent occurrence of M and X flares in the corona. A data driven, 3 D, non-force-free magnetohydrodynamic model restricted to the near-photospheric region is used to compute time series of the complete current density and the resistive heating rate per unit volume $(Q(t))$ in each pixel in neutral line regions (NLRs) of 14 ARs. The model is driven by time series of the magnetic field ${bf B}$ measured by the Helioseismic & Magnetic Imager on the Solar Dynamics Observatory (SDO) satellite. Spurious Doppler periods due to SDO orbital motion are filtered out of the time series for ${bf B}$ in every AR pixel. For each AR, the cumulative distribution function (CDF) of the values of the NLR area integral $Q_i(t)$ of $Q(t)$ is found to be a scale invariant power law distribution essentially identical to the observed CDF for the total energy released in coronal flares. This suggests that coronal flares and the photospheric $Q_i$ are correlated, and powered by the same process. The model predicts spikes in $Q_i$ with values orders of magnitude above background values. These spikes are driven by spikes in the non-force free component of the current density. The times of these spikes are plausibly correlated with times of subsequent M or X flares a few hours to a few days later. The spikes occur on granulation scales, and may be signatures of heating in horizontal current sheets. It is also found that the times of relatively large values of the rate of change of the NLR unsigned magnetic flux are also plausibly correlated with the times of subsequent M and X flares, and spikes in $Q_i$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا