ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Criticality Stabilizes High T_c Superconductivity Against Competing Symmetry-Breaking Instabilities

183   0   0.0 ( 0 )
 نشر من قبل Josef Ashkenazi
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The occurrence of high-T_c superconductivity in systems including the cuprates and the iron-based superconductors, is known to coincide with the existence of anomalous normal-state properties which have been associated with quantum criticality. We argue here that this observation results from the fact that quantum criticality can allow the occurrence of very-strong-coupling superconductivity by preventing its suppression due to competing symmetry-breaking instabilities. Treating the electrons through a large-U ansatz yields their separation into boson quasiparticles which are directly involved in the formation of these instabilities, represented as their Bose condensates, and charge-carrying fermion quasiparticles which are affected by them indirectly. Within the critical regime, condensates corresponding to the different broken-symmetry states are combined; consequently their negative effect on the pairing of the fermions is strongly diminished, enabling high-T_c superconductivity to occur. The observed phase diagram of the hole-doped cuprates then derives from a hidden T=0 quantum phase transition between a Fermi-liquid and a non-Fermi-liquid broken-symmetry striped state. The pseudogap range within this diagram is found to include two distinct regimes, with partial pairing occurring in one of them.


قيم البحث

اقرأ أيضاً

101 - G.M.Luke , Y.Fudamoto , K.M.Kojima 1998
We report muon spin relaxation measurements on the superconductor Sr2RuO4 that reveal the spontaneous appearance of an internal magnetic field below the transition temperature: the appearance of such a field indicates that the superconducting state i n this material is characterized by the breaking of time-reversal symmetry. These results, combined with other symmetry considerations, suggest that superconductivity in Sr2RuO4 is of p-wave (odd-parity) type, analogous to superfluid 3He.
64 - H. Ding 2000
In conventional superconductors, the pairing energy gap (Delta) and superconducting phase coherence go hand-in-hand. As the temperature is lowered, both the energy gap and phase coherence appear at the transition temperature T_c. In contrast, in unde rdoped high-T_c superconductors (HTSCs), a pseudogap appears at a much higher temperature T^*, smoothly evolving into the superconducting gap at T_c. Phase coherence on the other hand is only established at T_c, signaled by the appearance of a sharp quasiparticle (QP) peak in the excitation spectrum. Another important difference between the two types of superconductors is in the ratio of 2Delta / T_c=R. In BCS theory, R~3.5, is constant. In the HTSCs this ratio varies widely, continuing to increase in the underdoped region, where the gap increases while T_c decreases. Here we report that in HTSCs it is the ratio z_ADelta_m/T_c which is approximately constant, where Delta_m is the maximum value of the d-wave gap, and z_A is the weight of the coherent excitations in the spectral function. This is highly unusual, since in nearly all phase transitions, T_c is determined by an energy scale alone. We further show that in the low-temperature limit, z_{it A} increases monotonically with increasing doping x. The growth is linear, i.e. z_A(x)propto x, in the underdoped to optimally doped regimes, and slows down in overdoped samples. The reduction of z_A with increasing temperature resembles that of the c-axis superfluid density.
102 - T. Shang , M. Smidman , A. Wang 2020
By employing a series of experimental techniques, we provide clear evidence that CaPtAs represents a rare example of a noncentrosymmetric superconductor which simultaneously exhibits nodes in the superconducting gap and broken time-reversal symmetry (TRS) in its superconducting state (below $T_c$ $approx$ 1.5 K). Unlike in fully-gapped superconductors, the magnetic penetration depth $lambda(T)$ does not saturate at low temperatures, but instead it shows a $T^2$-dependence, characteristic of gap nodes. Both the superfluid density and the electronic specific heat are best described by a two-gap model comprising of a nodeless gap and a gap with nodes, rather than by single-band models. At the same time, zero-field muon-spin spectra exhibit increased relaxation rates below the onset of superconductivity, implying that TRS is broken in the superconducting state of CaPtAs, hence indicating its unconventional nature. Our observations suggest CaPtAs to be a new remarkable material which links two apparently disparate classes, that of TRS-breaking correlated magnetic superconductors with nodal gaps and the weakly-correlated noncentrosymmetric superconductors with broken TRS, normally exhibiting only a fully-gapped behavior.
146 - Y. Kopelevich , R. R. da Silva , 2012
The ordinary magnetoresistance (MR) of doped semiconductors is positive and quadratic in a low magnetic field, B, as it should be in the framework of the Boltzmann kinetic theory or in the conventional hopping regime. We observe an unusual highly-ani sotropic in-plane MR in graphite, which is neither quadratic nor always positive. In a certain current direction MR is negative and linear in B in fields below a few tens of mT with a crossover to a positive MR at higher fields, while in a perpendicular current direction we observe a giant super-linear and positive MR. These extraordinary MRs are respectively explained by a hopping magneto-conductance via non-zero angular momentum orbitals, and by the magneto-conductance of inhomogeneous media. The linear orbital NMR is a unique signature of the broken time-reversal symmetry (TRS) in graphite. While some local paramagnetic centers could be responsible for the broken TRS, the observed large diamagnetism suggests a more intriguing mechanism of this breaking, involving superconducting clusters with unconventional (chiral) order parameters and spontaneously generated normal-state current loops in graphite.
Superconductors close to quantum phase transitions often exhibit a simultaneous increase of electronic correlations and superconducting transition temperatures. Typical examples are given by the recently discovered iron-based superconductors. We inve stigated the band-specific quasiparticle masses of AFe2As2 single crystals with A = K, Rb, and Cs and determined their pressure dependence. The evolution of electronic correlations could be tracked as a function of volume and hole doping. The results indicate that with increasing alkali-metal ion radius a quantum critical point is approached. The critical fluctuations responsible for the enhancement of the quasiparticle masses appear to suppress the superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا