ﻻ يوجد ملخص باللغة العربية
We present an overview of high energy transients in astrophysics, highlighting important advances over the past 50 years. We begin with early discoveries of gamma-ray transients, and then delve into physical details associated with a variety of phenomena. We discuss some of the unexpected transients found by Fermi and Swift, many of which are not easily classifiable or in some way challenge conventional wisdom. These objects are important insofar as they underscore the necessity of future, more detailed studies.
Cosmic explosions dissipate energy into their surroundings on a very wide range of time-scales: producing shock waves and associated particle acceleration. The historical culprits for the acceleration of the bulk of Galactic cosmic rays are supernova
Search for high energy transients in the millisecond domain has come to the focus in recent times due to the detection of Gravitational Wave events and the identification of Fast Radio Bursts as cosmological sources. I will highlight the sensitivity
Many distinct classes of high-energy variability have been observed in astrophysical sources, on a range of timescales. The widest range (spanning microseconds-decades) is found in accreting, stellar-mass compact objects, including neutron stars and
The coincidental detection of the gravitational wave event GW 170817 and the associated gamma-ray burst GRB 170817A marked the advent of multi-messenger astronomy and represented a milestone in the study of GRBs. In this context, the launch of SVOM i
We search for the gamma-ray counterparts of stellar-mass black holes using long-term Fermi archive to investigate the electrostatic acceleration of electrons and positrons in the vicinity of the event horizon, by applying the pulsar outer-gap model t