ﻻ يوجد ملخص باللغة العربية
Using newly available form factors obtained from light cone QCD sum rules in full theory, we study the flavor changing neutral current transition of $Sigma_b rar Sigma mu^+ mu^-$ decay in the family non-universal $Z^prime$ model. In particular, we evaluate the differential branching ratio, forward-backward asymmetry as well as some related asymmetry parameters and polarizations. We compare the obtained results with the predictions of the standard model and discuss the sensitivity of the observables under consideration to family non-universal $Z^prime$ gauge boson. The order of differential branching ratio shows that this decay mode can be checked at LHC in near future.
We have studied phenomenological implications of several family non-universal U(1)$^prime$ sub-models in the U(1)$^prime$-extended Minimal Supersysmmetric Standard Model (UMSSM) possesing an extra down quark type exotic field. In doing this, we have
We report the first evidence for the decay Sigma+ -> p mu+ mu- from data taken by the HyperCP experiment(E871) at Fermilab. Based on three observed events, the branching ratio is B(Sigma+ -> p,mu+,mu-) = [8.6 +6.6,-5.4(stat) +/-5.5(syst)] x 10**-8. T
The Cabibbo-suppressed semileptonic decay $B^{+}to poverline{p}mu^{+} u_{mu}$ is observed for the first time using a sample of $pp$ collisions corresponding to an integrated luminosity of 1.0, 2.0 and 1.7fb$^{-1}$ at centre-of-mass energies of 7, 8 a
A search for the rare decay $Sigma^+ to p mu^+ mu^-$ is performed using $pp$ collision data recorded by the LHCb experiment at centre-of-mass energies $sqrt{s} = 7$ and $8$ TeV, corresponding to an integrated luminosity of $3 fb^{-1}$. An excess of e
We consider the existence of the state X^0 (214 MeV) in Sigma^+ -> p mu^+ mu^- decay found by the HyperCP collaboration. We assume that a fundamental spin zero boson X^0 coupled to quarks leads to flavor changing s -> d X^0 process. We estimate the s