ﻻ يوجد ملخص باللغة العربية
A bosonic field theory is derived for the tunable edge magnetism at graphene zigzag edges. The derivation starts from an effective fermionic theory for the interacting graphene edge states, derived previously from a two-dimensional interacting tight-binding model for graphene. The essential feature of this effective model, which gives rise to the weak edge magnetism, is the momentum-dependent non-local electron-electron interaction. It is shown that this momentum-dependence may be treated by an extension of the bosonization technique, and leads to interactions of the bosonic fields. These interactions are reminiscent of a phi^4 field theory. Focussing onto the regime close to the quantum phase transition between the ferromagnetic and the paramagnetic Luttinger liquid, a semiclassical interpretation of the interacting bosonic theory is given. Furthermore, it is argued that the universal critical behavior at the quantum phase transition between the paramagnetic and the ferromagnetic Luttinger liquid is governed by a small number of terms in this theory, which are accessible by quantum Monte-Carlo methods.
We study the magnetic properties of graphene edges and graphene/graphane interfaces under the influence of electrostatic gates. For this, an effective low-energy theory for the edge states, which is derived from the Hubbard model of the honeycomb lat
Magnetic carbon nanostructures are currently under scrutiny for a wide spectrum of applications. Here, we theoretically investigate armchair graphene nanoribbons patterned with asymmetric edge extensions consisting of laterally fused naphtho groups,
It is argued that the subtle crossover from decoherence-dominated classical magnetism to fluctuation-dominated quantum magnetism is experimentally accessible in graphene nanoribbons. We show that the width of a nanoribbon determines whether the edge
A graphene nanoribbon with zigzag edges has a gapped magnetic ground state with an antiferromagnetic inter-edge superexchange interaction. We present a theory based on asymptotic properties of the Dirac-model ribbon wavefunction which predicts $W^{-2
The tunable magnetism at graphene edges with lengths of up to 48 unit cells is analyzed by an exact diagonalization technique. For this we use a generalized interacting one-dimensional model which can be tuned continuously from a limit describing gra