ترغب بنشر مسار تعليمي؟ اضغط هنا

Role of correlations in the thermalization of quantum systems

87   0   0.0 ( 0 )
 نشر من قبل Bassano Vacchini
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the equilibration and thermalization properties of quantum systems interacting with a finite dimensional environment. By exploiting the concept of time averaged states, we introduce a completely positive map which allows to describe in a quantitative way the dependence of the equilibrium state on the initial condition. Our results show that the thermalization of quantum systems is favored if the dynamics induces small system-environment correlations, as well as small changes in the environment, as measured by the trace distance.



قيم البحث

اقرأ أيضاً

Providing the microscopic behavior of a thermalization process has always been an intriguing issue. There are several models of thermalization, which often requires interaction of the system under consideration with the microscopic constituents of th e macroscopic heat bath. With an aim to simulate such a thermalization process, here we look at the thermalization of a two-level quantum system under the action of a Markovian master equation corresponding to memory-less action of a heat bath, kept at a certain temperature, using a single-qubit ancilla. A two-qubit interaction Hamiltonian ($H_{th}$, say) is then designed -- with a single-qubit thermal state as the initial state of the ancilla -- which gives rise to thermalization of the system qubit in the infinite time limit. Further, we study the general form of Hamiltonian, of which ours is a special case, and look for the conditions for thermalization to occur. We also derive a Lindblad-like non-Markovian master equation for the system dynamics under the general form of system-ancilla Hamiltonian.
In this work we construct Wigner functions for hybrid continuous and discrete variable quantum systems. We demonstrate new capabilities in the visualization of the interactions and correlations within hybrid quantum systems. Specifically, we show how to clearly distinguish signatures that arise due to quantum and classical correlations in an entangled Bell-cat state. We further show how correlations are manifested in different types of interaction, leading to a deeper understanding of how quantum information is shared between two subsystems. Understanding the nature of the correlations between systems is central to harnessing quantum effects for information processing; the methods presented here reveal the nature of these correlations, allowing a clear visualization of the quantum information present in hybrid quantum systems. The methods presented here could be viewed as a form of quantum state spectroscopy.
We review some concepts and properties of quantum correlations, in particular multipartite measures, geometric measures and monogamy relations. We also discuss the relation between classical and total correlations
We develop a scheme for engineering genuine thermal states in analog quantum simulation platforms by coupling local degrees of freedom to driven, dissipative ancilla pseudospins. We demonstrate the scheme in a many-body quantum spin lattice simulatio n setting. A Born-Markov master equation describing the dynamics of the many-body system is developed, and we show that if the ancilla energies are periodically modulated, with a carefully chosen hierarchy of timescales, one can effectively thermalize the many-body system. Through analysis of the time-dependent dynamical generator, we determine the conditions under which the true thermal state is an approximate dynamical fixed point for general system Hamiltonians. Finally, we evaluate the thermalization protocol through numerical simulation and discuss prospects for implementation on current quantum simulation hardware.
We investigate a quantum battery made of N two-level systems, which is charged by an optical mode via an energy-conserving interaction. We quantify the fraction E(N) of energy stored in the B battery that can be extracted in order to perform thermody namic work. We first demonstrate that E(N) is highly reduced by the presence of correlations between the charger and the battery or B between the two-level systems composing the battery. We then show that the correlation-induced suppression of extractable energy, however, can be mitigated by preparing the charger in a coherent optical state. We conclude by proving that the charger-battery system is asymptotically free of such locking correlations in the N to infty limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا