ترغب بنشر مسار تعليمي؟ اضغط هنا

Present status and first results of the final focus beam line at the KEK Accelerator Test Facility

139   0   0.0 ( 0 )
 نشر من قبل Wendt, Manfred
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. Bambade




اسأل ChatGPT حول البحث

ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.



قيم البحث

اقرأ أيضاً

110 - R. Yang , A. Aryshev , P. Bambade 2021
Beam halo is one of the crucial issues limiting the machine performance and causing radioactivation in high-intensity accelerators. A clear picture of beam-halo formation is of great importance for successful suppression of the undesired beam loss. W e present numerical and experimental studies of transverse and longitudinal halos in the KEK Accelerator Test Facility. The fair accordance between predictions and observations in various conditions indicates that the Touschek scattering is the dominant mechanism forming the horizontal and momentum halos.
The Advanced Superconducting Test Acccelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration sectio n consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beamlines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750-MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5-GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.
109 - E. Harms , K. Carlson , B. Chase 2012
Powered operation of Cryomodule 1 (CM-1) at the Fermilab SRF Beam Test Facility began in late 2010. Since then a series of tests first on the eight individual cavities and then the full cryomodule have been performed. We report on the results of thes e tests and lessons learned which will have an impact on future module testing at Fermilab.
289 - Y. I. Kim 2013
The Accelerator Test Facility 2 (ATF2) is a scaled demonstrator system for final focus beam lines of linear high energy colliders. This paper describes the high resolution cavity beam position monitor (BPM) system, which is a part of the ATF2 diagnos tics. Two types of cavity BPMs are used, C-band operating at 6.423 GHz, and S-band at 2.888 GHz with an increased beam aperture. The cavities, electronics, and digital processing are described. The resolution of the C-band system with attenuators was determined to be approximately 250 nm and 1 m for the S-band system. Without attenuation the best recorded C-band cavity resolution was 27 nm.
The SwissFEL Injector Test Facility operated at the Paul Scherrer Institute between 2010 and 2014, serving as a pilot plant and testbed for the development and realization of SwissFEL, the X-ray Free-Electron Laser facility under construction at the same institute. The test facility consisted of a laser-driven rf electron gun followed by an S-band booster linac, a magnetic bunch compression chicane and a diagnostic section including a transverse deflecting rf cavity. It delivered electron bunches of up to 200 pC charge and up to 250 MeV beam energy at a repetition rate of 10 Hz. The measurements performed at the test facility not only demonstrated the beam parameters required to drive the first stage of an FEL facility, but also led to significant advances in instrumentation technologies, beam characterization methods and the generation, transport and compression of ultra-low-emittance beams. We give a comprehensive overview of the commissioning experience of the principal subsystems and the beam physics measurements performed during the operation of the test facility, including the results of the test of an in-vacuum undulator prototype generating radiation in the vacuum ultraviolet and optical range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا