ﻻ يوجد ملخص باللغة العربية
The density crossover scaling of various thermodynamic properties of solutions and melts of self-avoiding and highly flexible polymer chains without chain intersections confined to strictly two dimensions is investigated by means of molecular dynamics and Monte Carlo simulations of a standard coarse-grained bead-spring model. In the semidilute regime we confirm over an order of magnitude of the monomer density rho the expected power-law scaling for the interaction energy between different chains e_intersimrho^(21/8), the total pressure Psimrho^3 and the dimensionless compressibility gT=lim(q->0)(S(q)sim1/rho^2). Various elastic contributions associated to the affine and non-affine response to an infinitesimal strain are analyzed as functions of density and sampling time. We show how the size xi(rho) of the semidilute blob may be determined experimentally from the total monomer structure factor S(q) characterizing the compressibility of the solution at a given wavevector q. We comment briefly on finite persistence length effects.
We study the connective constants of weighted self-avoiding walks (SAWs) on infinite graphs and groups. The main focus is upon weighted SAWs on finitely generated, virtually indicable groups. Such groups possess so-called height functions, and this p
We study pressurised self-avoiding ring polymers in two dimensions using Monte Carlo simulations, scaling arguments and Flory-type theories, through models which generalise the model of Leibler, Singh and Fisher [Phys. Rev. Lett. Vol. 59, 1989 (1987)
We study a restricted class of self-avoiding walks (SAW) which start at the origin (0, 0), end at $(L, L)$, and are entirely contained in the square $[0, L] times [0, L]$ on the square lattice ${mathbb Z}^2$. The number of distinct walks is known to
The connective constant $mu(G)$ of a quasi-transitive graph $G$ is the asymptotic growth rate of the number of self-avoiding walks (SAWs) on $G$ from a given starting vertex. We survey several aspects of the relationship between the connective consta
We consider self-avoiding walks terminally attached to a surface at which they can adsorb. A force is applied, normal to the surface, to desorb the walk and we investigate how the behaviour depends on the vertex of the walk at which the force is appl