ترغب بنشر مسار تعليمي؟ اضغط هنا

Practical flux-prescriptions for gamma-ray burst afterglows, from early to late times

132   0   0.0 ( 0 )
 نشر من قبل Konstantinos Leventis Mr.
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present analytic flux prescriptions for broadband spectra of self-absorbed and optically thin synchrotron radiation from gamma-ray burst afterglows, based on one-dimensional relativistic hydrodynamic simulations. By treating the evolution of critical spectrum parameters as a power-law break between the ultrarelativistic and non-relativistic asymptotic solutions, we generalize the prescriptions to any observer time. Our aim is to provide a set of formulas that constitutes a useful tool for accurate fitting of model-parameters to observational data, regardless of the dynamical phase of the outflow. The applicability range is not confined to gamma-ray burst afterglows, but includes all spherical outflows (also jets before the jet-break) that produce synchrotron radiation as they adiabatically decelerate in a cold, power-law medium. We test the accuracy of the prescriptions and show that numerical evidence suggests that typical relative errors in the derivation of physical quantities are about 10 per cent. A software implementation of the presented flux prescriptions combined with a fitting code is freely available on request and on-line. Together they can be used in order to directly fit model parameters to data.



قيم البحث

اقرأ أيضاً

We present a study of the intermediate regime between ultra-relativistic and nonrelativistic flow for gamma-ray burst afterglows. The hydrodynamics of spherically symmetric blast waves is numerically calculated using the AMRVAC adaptive mesh refineme nt code. Spectra and light curves are calculated using a separate radiation code that, for the first time, links a parametrisation of the microphysics of shock acceleration, synchrotron self-absorption and electron cooling to a high-performance hydrodynamics simulation.
Aims: Drawing an analogy with Active Galactic Nuclei, we investigate the one-zone SSC model of Gamma Ray Bursts afterglows in the presence of electron injection and cooling both by synchrotron and SSC losses. Methods: We solve the spatially averaged kinetic equations which describe the simultaneous evolution of particles and photons, obtaining the multi-wavelength spectrum as a function of time. We back up our numerical calculations with analytical solutions of the equations using various profiles of the magnetic field evolution under certain simplifying assumptions. Results: We apply the model to the afterglow evolution of GRBs in a uniform density environment and examine the impact various parameters have on the multiwavelength spectra. We find that in cases where the electron injection and/or the ambient density is high, the losses are dominated by SSC and the solutions depart significantly from the ones derived in the synchrotron standard cases.
125 - D. A. Badjin 2013
We study thermal emission from circumstellar structures heated by gamma-ray burst (GRB) radiation and ejecta and calculate its contribution to GRB optical and X-ray afterglows using the modified radiation hydro-code small STELLA. It is shown that the rmal emission originating in heated dense shells around the GRB progenitor star can reproduce X-ray plateaus (like observed in GRB 050904, 070110) as well as deviations from a power law fading observed in optical afterglows of some GRBs (e.g. 020124, 030328, 030429X, 050904). Thermal radiation pressure in the heated circumburst shell dominates the gas pressure, producing rapid expansion of matter similar to supenova-like explosions close to opacity or radiation flux density jumps in the circumburst medium. This phenomenon can be responsible for so-called supernova bumps in optical afterglows of several GRBs. Such a `quasi-supernova suggests interpretation of the GRB-SN connection which does not directly involve the explosion of the GRB progenitor star.
85 - A. Panaitescu 2020
We derive basic analytical results for the timing and decay of the GRB-counterpart and delayed-afterglow light-curves for a brief emission episode from a relativistic surface endowed with angular structure, consisting of a uniform Core of size theta_ c (Lorentz factor Gamma_c and surface emissivity i_nu are angle-independent) and an axially-symmetric power-law Envelope (Gamma ~ theta^{-g}). In this Large-Angle Emission (LAE) model, radiation produced during the prompt emission phase (GRB) at angles theta > theta_c arrives at observer well after the burst (delayed emission). The dynamical time-range of the very fast-decaying GRB tail and of the flat afterglow plateau, and the morphology of GRB counterpart/afterglow, are all determined by two parameters: the Cores parameter Gamma_c*theta_c and the Envelopes Lorentz factor index g, leading to three types of light-curves that display three post-GRB phases (type 1: tail, plateau/slow-decay, post-plateau/normal-decay), two post-GRB phases (type 2: tail and fast-decay), or just one (type 3: normal decay). We show how X-ray light-curve features can be used to determine Core and Envelope dynamical and spectral parameters. Testing of the LAE model is done using the Swift/XRT X-ray emission of two afterglows of type 1 (060607A, 061121), one of type 2 (061110A), and one of type 3 (061007). We find that the X-ray afterglows with plateaus require an Envelope Lorentz factor Gamma ~ theta^{-2} and a comoving-frame emissivity i_nu ~ theta^2, thus, for a typical afterglow spectrum F_nu ~ nu^{-1}, the lab-frame energy release is uniform over the emitting surface.
The afterglow emission from gamma-ray bursts (GRBs) is believed to originate from a relativistic blast wave driven into the circumburst medium. Although the afterglow emission from radio up to X-ray frequencies is thought to originate from synchrotro n radiation emitted by relativistic, non-thermal electrons accelerated by the blast wave, the origin of the emission at high energies (HE; $gtrsim$~GeV) remains uncertain. The recent detection of sub-TeV emission from GRB~190114C by MAGIC raises further debate on what powers the very high-energy (VHE; $gtrsim 300$GeV) emission. Here, we explore the inverse Compton scenario as a candidate for the HE and VHE emissions, considering two sources of seed photons for scattering: synchrotron photons from the blast wave (synchrotron self-Compton or SSC) and isotropic photon fields external to the blast wave (external Compton). For each case, we compute the multi-wavelength afterglow spectra and light curves. We find that SSC will dominate particle cooling and the GeV emission, unless a dense ambient infrared photon field, typical of star-forming regions, is present. Additionally, considering the extragalactic background light attenuation, we discuss the detectability of VHE afterglows by existing and future gamma-ray instruments for a wide range of model parameters. Studying GRB~190114C, we find that its afterglow emission in the fermi-LAT band is synchrotron-dominated.The late-time fermi-LAT measurement (i.e., $tsim 10^4$~s), and the MAGIC observation also set an upper limit on the energy density of a putative external infrared photon field (i.e. $lesssim 3times 10^{-9},{rm erg,cm^{-3}}$), making the inverse Compton dominant in the sub-TeV energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا