ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic excitations in underdoped Ba(Fe1-xCox)2As2 with x=0.047

181   0   0.0 ( 0 )
 نشر من قبل Gregory Tucker
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic excitations in the paramagnetic-tetragonal phase of underdoped Ba(Fe0.953Co0.047)2As2, as measured by inelastic neutron scattering, can be well described by a phenomenological model with purely diffusive spin dynamics. At low energies, the spectrum around the magnetic ordering vector Q_AFM consists of a single peak with elliptical shape in momentum space. At high energies, this inelastic peak is split into two peaks across the direction perpendicular to Q_AFM. We use our fittings to argue that such a splitting is not due to incommensurability or propagating spin-wave excitations, but is rather a consequence of the anisotropies in the Landau damping and in the magnetic correlation length, both of which are allowed by the tetragonal symmetry of the system. We also measure the magnetic spectrum deep inside the magnetically-ordered phase, and find that it is remarkably similar to the spectrum of the paramagnetic phase, revealing the strongly overdamped character of the magnetic excitations.



قيم البحث

اقرأ أيضاً

Inelastic neutron scattering measurements have been performed on underdoped Ba(Fe1-xCox)2As2 (x = 4.7%) where superconductivity and long-range antiferromagnetic (AFM) order coexist. The broad magnetic spectrum found in the normal state develops into a magnetic resonance feature below TC that has appreciable dispersion along c-axis with a bandwidth of 3-4 meV. This is in contrast to the optimally doped x = 8.0% composition, with no long-range AFM order, where the resonance exhibits a much weaker dispersion [see Lumsden et al. Phys. Rev. Lett. 102, 107005 (2009)]. The results suggest that the resonance dispersion arises from interlayer spin correlations present in the AFM ordered state.
We investigate the nature of the SDW (Spin Density Wave) transition in the underdoped regime of an iron-based high Tc superconductor Ba(Fe1-xCox)2As2 by 75As NMR, with primary focus on a composition with x = 0.02 (T_SDW = 99 K).We demonstrate that cr itical slowing down toward the three dimensional SDW transition sets in at the tetragonal to orthorhombic structural phase transition, Ts = 105 K, suggesting strong interplay between structural distortion and spin correlations. In the critical regime between Ts and T_SDW, the dynamical structure factor of electron spins S(q,Wn) measured with the longitudinal NMR relaxation rate 1/T1 exhibits a divergent behavior obeying a power law, 1/T1~S(q, Wn)~(T/T_SDW-1)^a with the critical exponent a ~ 0.33.
We report muon spin rotation ($mu$SR) measurements of single crystal Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ and Sr(Fe$_{1-x}$Co$_x$)$_2$As$_2$. From measurements of the magnetic field penetration depth $lambda$ we find that for optimally- and over-doped samp les, $1/lambda(Tto 0)^2$ varies monotonically with the superconducting transition temperature T$_{rm C}$. Within the superconducting state we observe a positive shift in the muon precession signal, likely indicating that the applied field induces an internal magnetic field. The size of the induced field decreases with increasing doping but is present for all Co concentrations studied.
The orbital symmetries of electron doped iron-arsenide superconductors Ba(Fe1-xCox)2As2 have been measured with x-ray absorption spectroscopy. The data reveal signatures of Fe d electron itinerancy, weak electronic correlations, and a high degree of Fe-As hybridization related to the bonding topology of the Fe dxz+yz states, which are found to contribute substantially at the Fermi level. The energies and detailed orbital character of Fe and As derived unoccupied s and d states are found to be in remarkably good agreement with the predictions of standard density functional theory.
We report the temperature dependence of the resistivity and thermoelectric power under hydrostatic pressure of the itinerant antiferromagnet BaFe2As2 and the electron-doped superconductor Ba(Fe0.9Co0.1)2As2. We observe a hole-like contribution to the thermopower below the structural-magnetic transition in the parent compound that is suppressed in magnitude and temperature with pressure. Pressure increases the contribution of electrons to transport in both the doped and undoped compound. In the 10% Co-doped sample, we used a two-band model for thermopower to estimate the carrier concentrations and determine the effect of pressure on the band structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا