ﻻ يوجد ملخص باللغة العربية
We present a new approach to the static finite temperature correlation functions of the Heisenberg chain based on functional equations. An inhomogeneous generalization of the n-site density operator is considered. The lattice path integral formulation with a finite but arbitrary Trotter number allows to derive a set of discrete functional equations with respect to the spectral parameters. We show that these equations yield a unique characterization of the density operator. Our functional equations are a discrete version of the reduced q-Knizhnik-Zamolodchikov equations which played a central role in the study of the zero temperature case. As a natural result, and independent of the arguments given by Jimbo, Miwa, and Smirnov (2009) we prove that the inhomogeneous finite temperature correlation functions have the same remarkable structure as for zero temperature: they are a sum of products of nearest-neighbor correlators.
We present an ab-initio approach for grand canonical ensembles in thermal equilibrium with local or nonlocal external potentials based on the one-reduced density matrix. We show that equilibrium properties of a grand canonical ensemble are determined
A previous analysis of scaling, bounds, and inequalities for the non-interacting functionals of thermal density functional theory is extended to the full interacting functionals. The results are obtained from analysis of the related functionals from
We report on recent results that show that the pair correlation function of systems with exponentially decaying interactions can fail to exhibit Ornstein-Zernike asymptotics at all sufficiently high temperatures and all sufficiently small densities.
Closed form, analytical results for the finite-temperature one-body density matrix, and Wigner function of a $d$-dimensional, harmonically trapped gas of particles obeying exclusion statistics are presented. As an application of our general expressio
The Cholesky factorization of the moment matrix is applied to discrete orthogonal polynomials on the homogeneous lattice. In particular, semiclassical discrete orthogonal polynomials, which are built in terms of a discrete Pearson equation, are studi