ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast and slow rotators in the densest environments: a FLAMES/GIRAFFE IFS study of galaxies in Abell 1689 at z=0.183

392   0   0.0 ( 0 )
 نشر من قبل Francesco D'Eugenio
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present FLAMES/GIRAFFE integral field spectroscopy of 30 galaxies in the massive cluster Abell 1689 at z = 0.183. Conducting an analysis similar to that of ATLAS3D, we extend the baseline of the kinematic morphology-density relation by an order of magnitude in projected density and show that it is possible to use existing instruments to identify slow and fast rotators beyond the local Universe. We find 4.5 +- 1.0 slow rotators with a distribution in magnitude similar to those in the Virgo cluster. The overall slow rotator fraction of our Abell 1689 sample is 0.15 +- 0.03, the same as in Virgo using our selection criteria. This suggests that the fraction of slow rotators in a cluster is not strongly dependent on its density. However, within Abell 1689, we find that the fraction of slow rotators increases towards the centre, as was also found in the Virgo cluster.



قيم البحث

اقرأ أيضاً

We present integral-field spectroscopy of 27 galaxies in the Coma cluster observed with the Oxford SWIFT spectrograph, exploring the kinematic morphology-density relationship in a cluster environment richer and denser than any in the ATLAS3D survey. Our new data enables comparison of the kinematic morphology relation in three very different clusters (Virgo, Coma and Abell 1689) as well as to the field/group environment. The Coma sample was selected to match the parent luminosity and ellipticity distributions of the early-type population within a radius 15 (0.43 Mpc) of the cluster centre, and is limited to r = 16 mag (equivalent to M_K = -21.5 mag), sampling one third of that population. From analysis of the lambda-ellipticity diagram, we find 15+-6% of early-type galaxies are slow rotators; this is identical to the fraction found in the field and the average fraction in the Virgo cluster, based on the ATLAS3D data. It is also identical to the average fraction found recently in Abell 1689 by DEugenio et al.. Thus it appears that the average slow rotator fraction of early type galaxies remains remarkably constant across many different environments, spanning five orders of magnitude in galaxy number density. However, within each cluster the slow rotators are generally found in regions of higher projected density, possibly as a result of mass segregation by dynamical friction. These results provide firm constraints on the mechanisms that produce early-type galaxies: they must maintain a fixed ratio between the number of fast rotators and slow rotators while also allowing the total early-type fraction to increase in clusters relative to the field. A complete survey of Coma, sampling hundreds rather than tens of galaxies, could probe a more representative volume of Coma and provide significantly stronger constraints, particularly on how the slow rotator fraction varies at larger radii.
{abridged} We present imaging and spectroscopy of Abell 1689 (z=0.183) from GEMINI/GMOS-N and HST/ACS. We measure integrated photometry from the GMOS g and r images (for 531 galaxies) and surface photometry from the HST F625W image (for 43 galaxies) as well as velocities and velocity dispersions from the GMOS spectra (for 71 galaxies). We construct the Kormendy relation (KR), Faber-Jackson relation (FJR) and colour-magnitude relation (CMR) for early-type galaxies in Abell 1689 using this data and compare them to those of the Coma cluster. We measure the intrinsic scatter of the CMR in Abell 1689 to be 0.054 pm 0.004 mag which places degenerate constraints on the ratio of the assembly timescale to the time available (beta) and the age of the population. Making the assumption that galaxies in Abell 1689 will evolve into those of Coma over an interval of 2.26 Gyr breaks this degeneracy and limits beta to be > 0.6 and the age of the red sequence to be > 5.5 Gyr (formed at z > 0.55). Without corrections for size evolution but accounting for magnitude cuts and selection effects, the KR & FJR are inconsistent and disagree at the 2 sigma level regarding the amount of luminosity evolution in the last 2.26 Gyr. However, after correcting for size evolution the KR & FJR show similar changes in luminosity (0.22 pm 0.11 mag) that are consistent with the passive evolution of the stellar populations from a single burst of star formation 10.2 pm 3.3 Gyr ago (z = 1.8+inf-0.9). Thus the changes in the KR, FJR & CMR of Abell 1689 relative to Coma all agree and suggest old galaxy populations with little or no synchronisation in the star formation histories. Furthermore, the weak evidence for size evolution in the cluster environment in the last 2.26 Gyr places interesting constraints on the possible mechanisms at work, favouring harassment or secular processes over merger scenarios.
The properties of Ultra Compact Dwarf (UCD) galaxy candidates in Abell 1689 (z=0.183) are investigated, based on deep high resolution ACS images. A UCD candidate has to be unresolved, have i<28 (M_V<-11.5) mag and satisfy color limits derived from Ba yesian photometric redshifts. We find 160 UCD candidates with 22<i<28 mag. It is estimated that about 100 of these are cluster members, based on their spatial distribution and photometric redshifts. For i>26.8 mag, the radial and luminosity distribution of the UCD candidates can be explained well by Abell 1689s globular cluster (GC) system. For i<26.8 mag, there is an overpopulation of 15 +/- 5 UCD candidates with respect to the GC luminosity function. For i<26 mag, the radial distribution of UCD candidates is more consistent with the dwarf galaxy population than with the GC system of Abell 1689. The UCD candidates follow a color-magnitude trend with a slope similar to that of Abell 1689s genuine dwarf galaxy population, but shifted fainter by about 2-3 mag. Two of the three brightest UCD candidates (M_V ~ -17 mag) are slightly resolved. At the distance of Abell 1689, these two objects would have King-profile core radii of ~35 pc and r_eff ~300 pc, implying luminosities and sizes 2-3 times those of M32s bulge. Additional photometric redshifts obtained with late type stellar and elliptical galaxy templates support the assignment of these two resolved sources to Abell 1689. Our findings imply that in Abell 1689 there are at least 10 UCDs with M_V<-12.7 mag. Compared to the UCDs in the Fornax cluster they are brighter, larger and have colors closer to normal dwarf galaxies. This suggests that they may be in an intermediate stage of the stripping process. Spectroscopy is needed to definitely confirm the existence of UCDs in Abell 1689.
104 - Sadman S. Ali 2018
We have measured the strength of the UV upturn for red sequence galaxies in the Abell~1689 cluster at $z=0.18$, reaching to or below the $L^*$ level and therefore probing the general evolution of the upturn phenomenon. We find that the range of UV up turn strengths in the population as a whole has not declined over the past 2.2 Gyrs. This is consistent with a model where hot horizontal branch stars, produced by a Helium-enriched population, provide the required UV flux. Based on local counterparts, this interpretation of the result implies Helium abundances of at least 1.5 times the primordial value for this HB population, along with high formation and assembly redshifts for the galaxies and at least a subset of their stellar populations.
We study the formation of early-type galaxies through mergers with a sample of 70 high-resolution (softening length < 60 pc and 12*10^6 particles) numerical simulations of binary mergers of disc galaxies and 16 simulations of ETG remergers. These sim ulations, designed to accompany observations and models conducted within the Atlas3D project, encompass various mass ratios (from 1:1 to 6:1), initial conditions and orbital parameters. The progenitor disc galaxies are spiral-like with bulge to disc ratios typical of Sb and Sc galaxies. We find that binary mergers of disc galaxies with mass ratios of 3:1 and 6:1 are nearly always classified as Fast Rotators according to the Atlas3D criterion (based on the lambda_R parameter): they preserve the structure of the input fast rotating spiral progenitors. They have intrinsic ellipticities larger than 0.5, cover intrinsic lambda_R values between 0.2 and 0.6, within the range of observed Fast Rotators. Major disc mergers (mass ratios of 2:1 and 1:1) lead to both Fast and Slow Rotators. Most of the Fast Rotators produced in major mergers have intermediate flattening, with ellipticities between 0.4 and 0.6. Most Slow Rotators formed in these binary disc mergers hold a stellar Kinematically Distinct Core (KDC) in their 1-3 central kilo-parsec: these KDCs are built from the stellar components of the progenitors. Besides a handful of specific observed systems -- the counter-rotating discs (2-sigma galaxies) -- these therefore cannot reproduce the observed population of Slow Rotators in the nearby Universe. The mass ratio of the progenitors is a fundamental parameter for the formation of Slow Rotators in these binary mergers, but it also requires a retrograde spin for the earlier-type (Sb) progenitor galaxy with respect to the orbital angular momentum. (Abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا