ﻻ يوجد ملخص باللغة العربية
We introduce four original concepts: First, the point-like object (PO) specified as a classical extended real object whose response to an external force is aptly specified solely by the trajectory of a single point, whose velocity eventually stops changing after the cessation of the external force. Second, the dynamic models of an PO that generalize the Newton second law by the explicit modeling of PO-acceleration by nonlinear functions of the external force. Third, the long-time asymptotic dynamics of an PO (LTAD) modeled by polynomials in time-derivatives of the external force (by LTAD-models). To make LTAD-models we do not need to know the PO equation of motion. Given the PO equation of motion, without solving it, we can calculate the appropriate LTAD-models, but not vice verse. Fourth, the asymptotic differential equations about the LTAD. They are equivalent to the LTAD-models, but not to the PO equation of motion. To resolve the conceptual controversy surrounding the relativistic Lorentz-Abraham-Dirac equation, we interpret this equation as an asymptotic differential equation about the LTAD of an electrified PO, and not as a differential equation of motion for an electrified PO. Keywords: Point-like; asymptotic dynamics; cyclic motion; differential equation; Lorentz-Abraham-Dirac equation
The unipolar and bipolar macroscopic quantum models derived recently for instance in the area of charge transport are considered in spatial one-dimensional whole space in the present paper. These models consist of nonlinear fourth-order parabolic equ
It is well-known that a classical point charge in 1+1 D hyperbolic motion in space and time is reaction-free. But this is a special case of a larger set of reaction-free trajectories that in general are curved paths through space, i.e. in 2+1 D. This
We study the short-time evolution of the bipartite entanglement in quantum lattice systems with local interactions in terms of the purity of the reduced density matrix. A lower bound for the purity is derived in terms of the eigenvalue spread of the
Current deep reinforcement learning (RL) approaches incorporate minimal prior knowledge about the environment, limiting computational and sample efficiency. textit{Objects} provide a succinct and causal description of the world, and many recent works
Understanding the nature of time remains a key unsolved problem in science. Newton in the Principia asserted an absolute universal time that {it `flows equably}. Hamilton then proposed a mathematical unification of space and time within the framework