ﻻ يوجد ملخص باللغة العربية
The ALADIN experiment aims at observing how the critical magnetic field of a superconducting Aluminum film is modified, when it constitutes one of the reflecting surfaces of a Casimir cavity. If successful, such an observation would reveal the influence of vacuum energy on the superconducting phase transition. In this paper a rigorous analysis of experimental data is reported, the results are discussed and compared with theoretical predictions based on Lifshitz theory of dispersion forces, and the BCS formula for the optical conductivity of superconductors. The main novelty with respect to a previous data analysis by some of the authors, is the use of a cross-correlation method which is more rigorous and leads to better estimates.
The importance of models with an exact solution for the study of materials with non-trivial topological properties has been extensively demonstrated. Among these, the Kitaev model of a one-dimensional $p$-wave superconductor plays a guiding role in t
In this paper we study the behavior of the Casimir energy of a multi-cavity across the transition from the metallic to the superconducting phase of the constituting plates. Our analysis is carried out in the framework of the ARCHIMEDES experiment, ai
We find a series of topological phase transitions of increasing order, beyond the more standard second-order phase transition in a one-dimensional topological superconductor. The jumps in the order of the transitions depend on the range of the pairin
We evaluate the microwave admittance of a one-dimensional chain of fluxonium qubits coupled by shared inductors. Despite its simplicity, this system exhibits a rich phase diagram. A critical applied magnetic flux separates a homogeneous ground state
We demonstrate time resolved driving of two-photon blue sideband transitions between superconducting qubits and a transmission line resonator. Using the sidebands, we implement a pulse sequence that first entangles one qubit with the resonator, and s