ترغب بنشر مسار تعليمي؟ اضغط هنا

A study of the role of Lyman {beta} fluorescence on OI line strengths in Be stars

140   0   0.0 ( 0 )
 نشر من قبل Blesson Mathew
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Blesson Mathew




اسأل ChatGPT حول البحث

The possibility of the Ly{beta} fluorescence mechanism being operational in classical Be stars and thereby contributing to the strength of the OI 8446 {AA} line has been recognized for long. However this supposition needs to be quantified by comparing observed and predicted OI line ratios. In the present work, optical and near-infrared spectra of classical Be stars are presented. We analyse the observed strengths of the OI 7774, 8446, 11287 and 13165 {AA} lines which have been theoretically proposed as diagnostics for identifying the excitation mechanism. We have considered and examined the effects of Ly{beta} fluorescence, collisional excitation, recombination and continuum fluorescence on these OI line strengths. From our analysis it appears that the Ly{beta} fluorescence process is indeed operative in Be stars.


قيم البحث

اقرأ أيضاً

198 - Blesson Mathew 2018
We have investigated the role of a few prominent excitation mechanisms viz. collisional excitation, recombination, continuum fluorescence and Lyman beta fluorescence on the OI line spectra in Herbig Ae/Be stars. The aim is to understand which of them is the central mechanism that explains the observed OI line strengths. The study is based on an analysis of the observed optical spectra of 62 Herbig Ae/Be stars and near-infrared spectra of 17 Herbig Ae/Be stars. The strong correlation observed between the line fluxes of OI $lambda$8446 and OI $lambda$11287, as well as a high positive correlation between the line strengths of OI $lambda$8446 and H$alpha$ suggest that Lyman beta fluorescence is the dominant excitation mechanism for the formation of OI emission lines in Herbig Ae/Be stars. Further, from an analysis of the emission line fluxes of OI $lambdalambda$7774, 8446, and comparing the line ratios with those predicted by theoretical models, we assessed the contribution of collisional excitation in the formation of OI emission lines.
The hydrogen abundances in DBA white dwarfs determined from optical or UV spectra have been reported to differ significantly in some studies. We revisit this problem using our own model atmospheres and synthetic spectra, and present a theoretical inv estigation of the Lyman-$alpha$ line profile as a function of effective temperature and hydrogen abundance. We identify one possible solution to this discrepancy and show considerable improvement from a detailed analysis of optical and UV spectra of DBA stars.
113 - Jorick S. Vink 2015
Accretion is the prime mode of star formation, but the exact mode has not yet been identified in the Herbig Ae/Be mass range. We provide evidence that the the maximum variation in mass-accretion rate is reached on a rotational timescale, which sugges ts that rotational modulation is the key to understanding mass accretion. We show how spectropolarimetry is uniquely capable of resolving the innermost (within 0.1 AU) regions between the star and the disk, allowing us to map the 3D geometry of the accreting gas, and test theories of angular momentum evolution. We present Monte Carlo line-emission simulations showing how one would observe changes in the polarisation properties on rotational timescales, as accretion columns come and go into our line of sight.
APOGEE has amassed the largest ever collection of multi-epoch, high-resolution (R~22,500), H-band spectra for B-type emission line (Be) stars. The 128/238 APOGEE Be stars for which emission had never previously been reported serve to increase the tot al number of known Be stars by ~6%. We focus on identification of the H-band lines and analysis of the emission peak velocity separations (v_p) and emission peak intensity ratios (V/R) of the usually double-peaked H I and non-hydrogen emission lines. H I Br11 emission is found to preferentially form in the circumstellar disks at an average distance of ~2.2 stellar radii. Increasing v_p toward the weaker Br12--Br20 lines suggests these lines are formed interior to Br11. By contrast, the observed IR Fe II emission lines present evidence of having significantly larger formation radii; distinctive phase lags between IR Fe II and H I Brackett emission lines further supports that these species arise from different radii in Be disks. Several emission lines have been identified for the first time including ~16895, a prominent feature in the spectra for almost a fifth of the sample and, as inferred from relatively large v_p compared to the Br11-Br20, a tracer of the inner regions of Be disks. Unlike the typical metallic lines observed for Be stars in the optical, the H-band metallic lines, such as Fe II 16878, never exhibit any evidence of shell absorption, even when the H I lines are clearly shell-dominated. The first known example of a quasi-triple-peaked Br11 line profile is reported for HD 253659, one of several stars exhibiting intra- and/or extra-species V/R and radial velocity variation within individual spectra. Br11 profiles are presented for all discussed stars, as are full APOGEE spectra for a portion of the sample.
We present a study of ro-vibrational OH and CO emission from 21 disks around Herbig Ae/Be stars. We find that the OH and CO luminosities are proportional over a wide range of stellar ultraviolet luminosities. The OH and CO line profiles are also simi lar, indicating that they arise from roughly the same radial region of the disk. The CO and OH emission are both correlated with the far-ultraviolet luminosity of the stars, while the PAH luminosity is correlated with the longer wavelength ultraviolet luminosity of the stars. Although disk flaring affects the PAH luminosity, it is not a factor in the luminosity of the OH and CO emission. These properties are consistent with models of UV-irradiated disk atmospheres. We also find that the transition disks in our sample, which have large optically thin inner regions, have lower OH and CO luminosities than non-transition disk sources with similar ultraviolet luminosities. This result, while tentative given the small sample size, is consistent with the interpretation that transition disks lack a gaseous disk close to the star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا