ترغب بنشر مسار تعليمي؟ اضغط هنا

Rotating skyrmion lattices by spin torques and field or temperature gradients

110   0   0.0 ( 0 )
 نشر من قبل Karin Everschor
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chiral magnets like MnSi form lattices of skyrmions, i.e. magnetic whirls, which react sensitively to small electric currents j above a critical current density jc. The interplay of these currents with tiny gradients of either the magnetic field or the temperature can induce a rotation of the magnetic pattern for j>jc. Either a rotation by a finite angle of up to 15 degree or -- for larger gradients -- a continuous rotation with a finite angular velocity is induced. We use Landau-Lifshitz-Gilbert equations extended by extra damping terms in combination with a phenomenological treatment of pinning forces to develop a theory of the relevant rotational torques. Experimental neutron scattering data on the angular distribution of skyrmion lattices suggests that continuously rotating domains are easy to obtain in the presence of remarkably small currents and temperature gradients.



قيم البحث

اقرأ أيضاً

We study quantum Hall ferromagnets with a finite density topologically charged spin textures in the presence of internal degrees of freedom such as spin, valley, or layer indices, so that the system is parametrised by a $d$-component complex spinor f ield. In the absence of anisotropies, we find formation of a hexagonal Skyrmion lattice which completely breaks the underlying SU(d) symmetry. The ground state charge density modulation, which inevitably exists in these lattices, vanishes exponentially in $d$. We compute analytically the complete low-lying excitation spectrum, which separates into $d^{2}-1$ gapless acoustic magnetic modes and a magnetophonon. We discuss the role of effective mass anisotropy for SU(3)-valley Skyrmions relevant for experiments with AlAs quantum wells. Here, we find a transition, which breaks a six-fold rotational symmetry of a triangular lattice, followed by a formation of a square lattice at large values of anisotropy strength.
Deterministic magnetization switching using spin-orbit torque (SOT) has recently emerged as an efficient means to electrically control the magnetic state of ultrathin magnets. The SOT switching still lacks in oscillatory switching characteristics ove r time, therefore, it is limited to bipolar operation where a change in polarity of the applied current or field is required for bistable switching. The coherent rotation based oscillatory switching schemes cannot be applied to SOT because the SOT switching occurs through expansion of magnetic domains. Here, we experimentally achieve oscillatory switching in incoherent SOT process by controlling domain wall dynamics. We find that a large field-like component can dynamically influence the domain wall chirality which determines the direction of SOT switching. Consequently, under nanosecond current pulses, the magnetization switches alternatively between the two stable states. By utilizing this oscillatory switching behavior we demonstrate a unipolar deterministic SOT switching scheme by controlling the current pulse duration.
103 - Yi Wang , Dapeng Zhu , Yang Wu 2017
Topological insulators (TIs) with spin momentum locked topological surface states (TSS) are expected to exhibit a giant spin-orbit torque (SOT) in the TI/ferromagnet systems. To date, the TI SOT driven magnetization switching is solely reported in a Cr doped TI at 1.9 K. Here, we directly show giant SOT driven magnetization switching in a Bi2Se3/NiFe heterostructure at room temperature captured using a magneto-optic Kerr effect microscope. We identify a large charge to spin conversion efficiency of ~1-1.75 in the thin TI films, where the TSS is dominant. In addition, we find the current density required for the magnetization switching is extremely low, ~6x10^5 A cm-2, which is one to two orders of magnitude smaller than that with heavy metals. Our demonstration of room temperature magnetization switching of a conventional 3d ferromagnet using Bi2Se3 may lead to potential innovations in TI based spintronic applications.
We demonstrate a fast numerical method of theoretical studies of skyrmion lattice or spiral order in magnetic materials with Dzyaloshinsky-Moriya interaction. The method is based on the Fourier expansion of the magnetization combined with a minimizat ion of the free energy functional of the magnetic material in Fourier space, yielding the optimal configuration of the system for any given set of parameters. We employ a Lagrange multiplier technique in order to satisfy micromagnetic constraints. We apply this method to a system that exhibits, depending on the parameter choice, ferromagnetic, skyrmion lattice, or spiral (helical) order. Known critical fields corresponding to the helical-skyrmion as well as the skyrmion-ferromagnet phase transitions are reproduced with high precision. Using this numerical method we predict new types of excited (metastable) states of the skyrmion lattice, which may be stabilized by coupling the skyrmion lattice with a superconducting vortex lattice. The method can be readily adapted to other micromagnetic systems.
Magnetic skyrmions are topologically protected spin textures, stabilised in systems with strong Dzyaloshinskii-Moriya interaction (DMI). Several studies have shown that electrical currents can move skyrmions efficiently through spin-orbit torques. Wh ile promising for technological applications, current-driven skyrmion motion is intrinsically collective and accompanied by undesired heating effects. Here we demonstrate a new approach to control individual skyrmion positions precisely, which relies on the magnetic interaction between sample and a magnetic force microscopy (MFM) probe. We investigate perpendicularly magnetised X/CoFeB/MgO multilayers, where for X = W or Pt the DMI is sufficiently strong to allow for skyrmion nucleation in an applied field. We show that these skyrmions can be manipulated individually through the local field gradient generated by the scanning MFM probe with an unprecedented level of accuracy. Furthermore, we show that the probe stray field can assist skyrmion nucleation. Our proof-of-concepts results offer current-free paradigms to efficient individual skyrmion control.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا