ﻻ يوجد ملخص باللغة العربية
We theoretically analyze the Bragg spectroscopic interferometer of two spatially separated atomic Bose-Einstein condensates that was experimentally realized by Saba et al. [Science 2005 v307 p1945] by continuously monitoring the relative phase evolution. Even though the atoms in the light-stimulated Bragg scattering interact with intense coherent laser beams, we show that the phase is created by quantum measurement-induced back-action on the homodyne photo-current of the lasers, opening possibilities for quantum-enhanced interferometric schemes. We identify two regimes of phase evolution: a running phase regime which was observed in the experiment of Saba et al., that is sensitive to an energy offset and suitable for an interferometer, and a trapped phase regime, that can be insensitive to applied forces and detrimental to interferometric applications.
We experimentally demonstrate a multi-mode interferometer comprising a Bose-Einstein condensate of $^{39}$K atoms trapped in a harmonic potential, where the interatomic interaction can be cancelled exploiting Feshbach resonances. Kapitza-Dirac diffra
An atomic Bose-Einstein condensate (BEC) is often described as a macroscopic object which can be approximated by a coherent state. This, on the surface, would appear to indicate that its behavior should be close to being classical. In this paper, we
We propose a scheme for generating two-dimensional turbulence in harmonically trapped atomic condensates with the novelty of controlling the polarization (net rotation) of the turbulence. Our scheme is based on an initial giant (multicharged) vortex
Weak measurement in tandem with real-time feedback control is a new route toward engineering novel non-equilibrium quantum matter. Here we develop a theoretical toolbox for quantum feedback control of multicomponent Bose-Einstein condensates (BECs) u
Excited-state quantum phase transitions (ESQPTs) extend the notion of quantum phase transitions beyond the ground state. They are characterized by closing energy gaps amid the spectrum. Identifying order parameters for ESQPTs poses however a major ch