ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints of Dark Energy at High Redshift

88   0   0.0 ( 0 )
 نشر من قبل Qiping Su
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Constrains of dark energy (DE) at high redshift from current and mock future observational data are obtained. It is found that present data give poor constraints of DE even beyond redshift z=0.4, and mock future 2298 type Ia supernove data only give a little improvement of the constraints. We analyze in detail why constraints of DE decrease rapidly with the increasing of redshift. Then we try to improve the constraints of DE at high redshift. It is shown that the most efficient way is to improve the error of observations.

قيم البحث

اقرأ أيضاً

We reconsider the dynamics of the Universe in the presence of interactions in the cosmological dark sector. A class of interacting models is introduced via a real function $fleft(rright)$ of the ratio $r$ between the energy densities of the (pressure less) cold dark matter (CDM) and dark energy (DE). The subclass of models for which the ratio $r$ depends only on the scale factor is shown to be equivalent to unified models of the dark sector, i.e. models for which the CDM and DE components can be combined in order to form a unified dark fluid. For specific choices of the function $fleft(rright)$ we recover several models already studied in the literature. We analyse various special cases of this type of interacting models using a suitably modified version of the CLASS code combined with MontePython in order to constrain the parameter space with the data from supernova of type SNe Ia (JLA), the Hubble constant $H_{0}$, cosmic chronometers (CC), baryon acoustic oscilations (BAO) and data from the Planck satellite (Planck TT). Our analysis shows that even if data from the late Universe ($H_{0}$, SNe Ia and CC) indicate an interaction in the dark sector, the data related to the early Universe (BAO and Planck TT) constrain this interaction substantially, in particular for cases in which the background dynamics is strongly affected.
In recent years discrepancies have emerged in measurements of the present-day rate of expansion of the universe $H_0$ and in estimates of the clustering of matter $S_8$. Using the most recent cosmological observations we reexamine a novel model propo sed to address these tensions, in which cold dark matter disintegrates into dark radiation. The disintegration process is controlled by its rate $Gamma = alpha mathcal{H}$, where $alpha$ is a (constant) dimensionless parameter quantifying the strength of the disintegration mechanism and $mathcal{H}$ is the conformal Hubble rate in the spatially flat Friedmann-Lema^{i}tre-Robertson-Walker universe. We constrain this model with the latest 2018 Planck temperature and polarization data, showing that there is no evidence for $alpha eq 0$ and that it cannot solve the $H_0$ tension below $3sigma$, clashing with the result obtained by analyzing the Planck 2015 temperature data. We also investigate two possible extensions of the model in which the dark energy equation-of-state parameter $w eq -1$. In this case it is possible to combine Planck data with the SH0ES measurement, and we demonstrate that in both these models the $H_0$ tension is resolved at the $1sigma$ level, but the condition $w eq -1$ exacerbates the $S_8$ tension. We also demonstrate that the addition of intermediate-redshift data (from the Pantheon supernova type Ia dataset and baryon acoustic oscillations) weakens the effectiveness of all these models to address the $H_0$ and $S_8$ tensions.
We investigate cosmological models in which dynamical dark energy consists of a scalar field whose present-day value is controlled by a coupling to the neutrino sector. The behaviour of the scalar field depends on three functions: a kinetic function, the scalar field potential, and the scalar field-neutrino coupling function. We present an analytic treatment of the background evolution during radiation- and matter-domination for exponential and inverse power law potentials, and find a relaxation of constraints compared to previous work on the amount of early dark energy in the exponential case. We then carry out a numerical analysis of the background cosmology for both types of potential and various illustrative choices of the kinetic and coupling functions. By applying bounds from Planck on the amount of early dark energy, we are able to constrain the magnitude of the kinetic function at early times.
134 - Johannes Noller 2020
Gravitational wave (GW) constraints have recently been used to significantly restrict models of dark energy and modified gravity. New bounds arising from GW decay and GW-induced dark energy instabilities are particularly powerful in this context, com plementing bounds from the observed speed of GWs. We discuss the associated linear cosmology for Horndeski gravity models surviving these combined bounds and compute the corresponding cosmological parameter constraints, using CMB, redshift space distortion, matter power spectrum and BAO measurements from the Planck, SDSS/BOSS and 6dF surveys. The surviving theories are strongly constrained, tightening previous bounds on cosmological deviations from $Lambda{}$CDM by over an order of magnitude. We also comment on general cosmological stability constraints and the nature of screening for the surviving theories, pointing out that a raised strong coupling scale can ensure compatibility with gravitational wave constraints, while maintaining a functional Vainshtein screening mechanism on solar system scales. Finally, we discuss the quasi-static limit as well as (constraints on) related observables for near-future surveys.
We determine constraints on spatially-flat tilted dynamical dark energy XCDM and $phi$CDM inflation models by analyzing Planck 2015 cosmic microwave background (CMB) anisotropy data and baryon acoustic oscillation (BAO) distance measurements. XCDM is a simple and widely used but physically inconsistent parameterization of dynamical dark energy, while the $phi$CDM model is a physically consistent one in which a scalar field $phi$ with an inverse power-law potential energy density powers the currently accelerating cosmological expansion. Both these models have one additional parameter compared to standard $Lambda$CDM and both better fit the TT + lowP + lensing + BAO data than does the standard tilted flat-$Lambda$CDM model, with $Delta chi^2 = -1.26 (-1.60)$ for the XCDM ($phi$CDM) model relative to the $Lambda$CDM model. While this is a 1.1$sigma$ (1.3$sigma$) improvement over standard $Lambda$CDM and so not significant, dynamical dark energy models cannot be ruled out. In addition, both dynamical dark energy models reduce the tension between the Planck 2015 CMB anisotropy and the weak lensing $sigma_8$ constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا