ترغب بنشر مسار تعليمي؟ اضغط هنا

Compact radio emission from z~0.2 X-ray bright AGN

112   0   0.0 ( 0 )
 نشر من قبل Jens Zuther
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radio and X-ray emission of AGN appears to be correlated. The details of the underlying physical processes, however, are still not fully understood, i.e., to what extent is the X-ray and radio emission originating from the same relativistic particles or from the accretion-disk or corona or both. We study the cm radio emission of an SDSS/ROSAT/FIRST matched sample of 13 X-raying AGN in the redshift range 0.11< z < 0.37 at high angular resolution with the goal of searching for jet structures or diffuse, extended emission on sub-kpc scales. We use MERLIN at 18 cm for all objects and Western EVN at 18 cm for four objects to study the radio emission on scales of ~500 pc and ~40 pc for the MERLIN and EVN observations, respectively. The detected emission is dominated by compact nuclear radio structures. We find no kpc collimated jet structures. The EVN data indicate for compact nuclei on 40 pc scales, with brightness temperatures typical for accretion-disk scenarios. Comparison with FIRST shows that the 18 cm emission is resolved out up to 50% by MERLIN. Star-formation rates based on large aperture SDSS spectra are generally too small to produce considerable contamination of the nuclear radio emission. We can, therefore, assume the 18 cm flux densities to be produced in the nuclei of the AGN. Together with the ROSAT soft X-ray luminosities and black hole mass estimates from the literature, our sample objects follow closely the Merloni et al. (2003) fundamental plane relation, which appears to trace the accretion processes. Detailed X-ray spectral modeling from deeper hard X-ray observations and higher angular resolution at radio wavelengths are required to further proceed in the disentangling of jet and accretion related processes.



قيم البحث

اقرأ أيضاً

We present a study of Spitzer/IRAC and X-ray active galactic nuclei (AGNs) selection techniques in order to quantify the overlap, uniqueness, contamination, and completeness of each. We investigate how the overlap and possible contamination of the sa mples depends on the IR and X-ray depths. We use Spitzer/IRAC imaging, Chandra and XMM X-ray imaging, and PRism MUlti-object Survey (PRIMUS) spectroscopic redshifts to construct galaxy and AGN samples at 0.2<z<1.2 over 8 deg^2. We construct samples over a wide range of IRAC flux limits (SWIRE to GOODS depth) and X-ray flux limits (10 ks to 2 Ms). We compare IR-AGN samples defined using the IRAC color selection of Stern et al. and Donley et al. with X-ray detected AGN samples. For roughly similar depth IR and X-ray surveys, we find that ~75% of IR-AGN are identified as X-ray AGN. This fraction increases to ~90% when comparing against the deepest X-ray data, indicating that only ~10% of IR-selected AGN may be heavily obscured. The IR-AGN selection proposed by Stern et al. suffers from contamination by star-forming galaxies at various redshifts when using deeper IR data, though the selection technique works well for shallow IR data. While similar overall, the IR-AGN samples preferentially contain more luminous AGN, while the X-ray AGN samples preferentially contain lower specific accretion rate AGN, where the host galaxy light dominates at IR wavelengths. The host galaxy populations of the IR and X-ray AGN samples have similar restframe colors and stellar masses; both selections identify AGN in blue, star-forming and red, quiescent galaxies.
We investigate the possibility that radio-bright active galactic nuclei (AGN) are responsible for the TeV--PeV neutrinos detected by IceCube. We use an unbinned maximum-likelihood-ratio method, 10 years of IceCube muon-track data, and 3388 radio-brig ht AGN selected from the Radio Fundamental Catalog. None of the AGN in the catalog have a large global significance. The two most significant sources have global significance of $simeq$ 1.5$sigma$ and 0.8$sigma$, though 4.1$sigma$ and 3.8$sigma$ local significance. Our stacking analyses show no significant correlation between the whole catalog and IceCube neutrinos. We infer from the null search that this catalog can account for at most 30% (95% CL) of the diffuse astrophysical neutrino flux measured by IceCube. Moreover, our results disagree with recent work that claimed a 4.1$sigma$ detection of neutrinos from the sources in this catalog, and we discuss the reasons of the difference.
80 - Jens Zuther 2008
The physical nature of the X-ray/radio correlation of AGN is still an unsolved question. High angular resolution observations are necessary to disentangle the associated energy dynamics into nuclear and stellar components. We present MERLIN/EVN 18cm observations of 13 X-raying AGN. The sample consists of Seyfert 1, Narrow Line Seyfert 1, and LINER-like galaxies. We find that for all objects the radio emission is unresolved and that the radio luminosities and brightness temperatures are too high for star formation to play an important role. This indicates that the radio emission in these sources is closely connected to processes that occur in the vicinity of the central massive black hole, also where the X-ray emission is believed to originate in.
We report on deep Chandra X-ray Telescope imaging observations of 4C 63.20, one of the few known radio galaxies at z>3.5. The X-ray counterpart is resolved into a core plus two off-nuclear sources that (combined) account for close to 30% of the total X-ray flux. Their morphology and orientation are consistent with a diffuse, lobe-like nature, albeit compact hotspots cannot be ruled out. The broadband spectral energy distribution of 4C 63.20 can be reproduced with a jet model where the majority of the radio flux can be ascribed to synchrotron emission from the hotspots, whereas the (non-nuclear) X-ray emission is produced via Inverse Compton (IC) off of Cosmic Microwave Background (CMB) photons within the extended lobes. This scenario is broadly consistent with the expectation from highly magnetized lobes in a hotter CMB, and supports the view that IC/CMB may quench less extreme radio lobes at high redshifts.
Using data from the DEEP2 galaxy redshift survey and the All Wavelength Extended Groth Strip International Survey we obtain stacked X-ray maps of galaxies at 0.7 < z < 1.0 as a function of stellar mass. We compute the total X-ray counts of these gala xies and show that in the soft band (0.5--2,kev) there exists a significant correlation between galaxy X-ray counts and stellar mass at these redshifts. The best-fit relation between X-ray counts and stellar mass can be characterized by a power law with a slope of 0.58 +/- 0.1. We do not find any correlation between stellar mass and X-ray luminosities in the hard (2--7,kev) and ultra-hard (4--7,kev) bands. The derived hardness ratios of our galaxies suggest that the X-ray emission is degenerate between two spectral models, namely point-like power-law emission and extended plasma emission in the interstellar medium. This is similar to what has been observed in low redshift galaxies. Using a simple spectral model where half of the emission comes from power-law sources and the other half from the extended hot halo we derive the X-ray luminosities of our galaxies. The soft X-ray luminosities of our galaxies lie in the range 10^39-8x10^40, ergs/s. Dividing our galaxy sample by the criteria U-B > 1, we find no evidence that our results for X-ray scaling relations depend on optical color.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا