ترغب بنشر مسار تعليمي؟ اضغط هنا

Variational procedure for nuclear shell-model calculations and energy-variance extrapolation

149   0   0.0 ( 0 )
 نشر من قبل Noritaka Shimizu
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss a variational calculation for nuclear shell-model calculations and propose a new procedure for the energy-variance extrapolation (EVE) method using a sequence of the approximated wave functions obtained by the variational calculation. The wave functions are described as linear combinations of the parity, angular-momentum projected Slater determinants, the energy of which is minimized by the conjugate gradient method obeying the variational principle. The EVE generally works well using the wave functions, but we found some difficult cases where the EVE gives a poor estimation. We discuss the origin of the poor estimation concerning shape coexistence. We found that the appropriate reordering of the Slater determinants allows us to overcome this difficulty and to reduce the uncertainty of the extrapolation.



قيم البحث

اقرأ أيضاً

60 - L. Coraggio , A. Gargano , 2016
We present a procedure that is helpful to reduce the computational complexity of large-scale shell-model calculations, by preserving as much as possible the role of the rejected degrees of freedom in an effective approach. Our truncation is driven fi rst by the analysis of the effective single-particle energies of the original large-scale shell-model hamiltonian, so to locate the relevant degrees of freedom to describe a class of isotopes or isotones, namely the single-particle orbitals that will constitute a new truncated model space. The second step is to perform an unitary transformation of the original hamiltonian from its model space into the truncated one. This transformation generates a new shell-model hamiltonian, defined in a smaller model space, that retains effectively the role of the excluded single-particle orbitals. As an application of this procedure, we have chosen a realistic shell-model hamiltonian defined in a large model space, set up by seven and five proton and neutron single-particle orbitals outside 88Sr, respectively. We study the dependence of shell-model results upon different truncations of the original model space for the Zr, Mo, Ru, Pd, Cd, and Sn isotopic chains, showing the reliability of this truncation procedure.
We propose a variational calculation scheme utilizing the superposition of the angular-momentum, parity, number projected quasiparticle vacua, that is especially suitable for applying to medium-heavy nuclei in shell-model calculations. We derive a fo rmula for the energy variance with quasi-particle vacua and apply the energy-variance extrapolation to the present scheme for further precise estimation of the exact shell-model energy. The validity of the method is presented for the shell-model calculation of $^{132}$Ba in the $50 leq Z,N leq 82$ model space. We also discuss the feasibility of this scheme in the case of the $^{150}$Nd in the $50 leq Z leq 82$ and $82 leq Z leq 126$ model space and demonstrate that its neutrinoless-double-beta-decay matrix element is obtained showing good convergence.
A review is presented of the development and current status of nuclear shell-model calculations in which the two-body effective interaction is derived from the free nucleon-nucleon potential. The significant progress made in this field within the las t decade is emphasized, in particular as regards the so-called V-low-k approach to the renormalization of the bare nucleon-nucleon interaction. In the last part of the review we first give a survey of realistic shell-model calculations from early to present days. Then, we report recent results for neutron-rich nuclei near doubly magic 132Sn and for the whole even-mass N=82 isotonic chain. These illustrate how shell-model effective interactions derived from modern nucleon-nucleon potentials are able to provide an accurate description of nuclear structure properties.
This paper presents a short overview of the shell-model approach with realistic effective interactions to the study of exotic nuclei. We first give a sketch of the current state of the art of the theoretical framework of this approach, focusing on th e main ingredients and most relevant recent advances. Then, we present some selected results for neutron-rich nuclei in various mass regions, namely oxygen isotopes, $N=40$ isotones, and nuclei around $^{132}$Sn, to show the merit as well as the limits of these calculations.
We present the first application of a new approach, proposed in [Journal of Physics G: Nuclear and Particle Physics, 43, 04LT01 (2016)] to derive coupling constants of the Skyrme energy density functional (EDF) from ab initio Hamiltonian. By perturbi ng the ab initio Hamiltonian with several functional generators defining the Skyrme EDF, we create a set of metadata that is then used to constrain the coupling constants of the functional. We use statistical analysis to obtain such an ab initio-equivalent Skyrme EDF. We find that the resulting functional describes properties of atomic nuclei and infinite nuclear matter quite poorly. This may point out to the necessity of building up the ab initio-equivalent functionals from more sophisticated generators. However, we also indicate that the current precision of the ab initio calculations may be insufficient for deriving meaningful nuclear EDFs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا