ترغب بنشر مسار تعليمي؟ اضغط هنا

AKSZ construction from reduction data

116   0   0.0 ( 0 )
 نشر من قبل Alejandro Cabrera
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss a general procedure to encode the reduction of the target space geometry into AKSZ sigma models. This is done by considering the AKSZ construction with target the BFV model for constrained graded symplectic manifolds. We investigate the relation between this sigma model and the one with the reduced structure. We also discuss several examples in dimension two and three when the symmetries come from Lie group actions and systematically recover models already proposed in the literature.



قيم البحث

اقرأ أيضاً

Any local gauge theory can be represented as an AKSZ sigma model (upon parameterization if necessary). However, for non-topological models in dimension higher than 1 the target space is necessarily infinite-dimensional. The interesting alternative kn own for some time is to allow for degenerate presymplectic structure in the target space. This leads to a very concise AKSZ-like representation for frame-like Lagrangians of gauge systems. In this work we concentrate on Einstein gravity and show that not only the Lagrangian but also the full-scale Batalin--Vilkovisky formulation is naturally encoded in the presymplectic AKSZ formulation, giving an elegant supergeometrical construction of BV for Cartan-Weyl action. The same applies to the main structures of the respective Hamiltonian BFV formulation.
A gauge PDE is a natural notion which arises by abstracting what physicists call a local gauge field theory defined in terms of BV-BRST differential (not necessarily Lagrangian). We study supergeometry of gauge PDEs paying particular attention to glo bally well-defined definitions and equivalences of such objects. We demonstrate that a natural geometrical language to work with gauge PDEs is that of $Q$-bundles. In particular, we demonstrate that any gauge PDE can be embedded into a super-jet bundle of the $Q$-bundle. This gives a globally well-defined version of the so-called parent formulation. In the case of reparameterization-invariant systems, the parent formulation takes the form of an AKSZ-type sigma model with an infinite-dimensional target space.
In this note the AKSZ construction is applied to the BFV description of the reduced phase space of the Einstein-Hilbert and of the Palatini--Cartan theories in every space-time dimension greater than two. In the former case one obtains a BV theory fo r the first-order formulation of Einstein--Hilbert theory, in the latter a BV theory for Palatini--Cartan theory with a partial implementation of the torsion-free condition already on the space of fields. All theories described here are
We derive a Hamiltonian structure for the $N$-particle hyperbolic spin Ruijsenaars-Schneider model by means of Poisson reduction of a suitable initial phase space. This phase space is realised as the direct product of the Heisenberg double of a facto risable Lie group with another symplectic manifold that is a certain deformation of the standard canonical relations for $Nell$ conjugate pairs of dynamical variables. We show that the model enjoys the Poisson-Lie symmetry of the spin group ${rm GL}_{ell}({mathbb C})$ which explains its superintegrability. Our results are obtained in the formalism of the classical $r$-matrix and they are compatible with the recent findings on the different Hamiltonian structure of the model established in the framework of the quasi-Hamiltonian reduction applied to a quasi-Poisson manifold.
257 - Taro Kimura , Rui-Dong Zhu 2019
The topological vertex formalism for 5d $mathcal{N}=1$ gauge theories is not only a convenient tool to compute the instanton partition function of these theories, but it is also accompanied by a nice algebraic structure that reveals various kinds of nice properties such as dualities and integrability of the underlying theories. The usual refined topological vertex formalism is derived for gauge theories with $A$-type quiver structure (and $A$-type gauge groups). In this article, we propose a construction with a web of vertex operators for all $ABCDEFG$-type and affine quivers by introducing several new vertices into the formalism, based on the reproducing of known instanton partition functions and qq-characters for these theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا