ﻻ يوجد ملخص باللغة العربية
Astronomical light echoes, the time-dependent light scattered by dust in the vicinity of varying objects, have been recognized for over a century. Initially, their utility was thought to be confined to mapping out the three-dimensional distribution of interstellar dust. Recently, the discovery of spectroscopically-useful light echoes around centuries-old supernovae in the Milky Way and the Large Magellanic Cloud has opened up new scientific opportunities to exploit light echoes. In this review, we describe the history of light echoes in the local Universe and cover the many new developments in both the observation of light echoes and the interpretation of the light scattered from them. Among other benefits, we highlight our new ability to spectroscopically classify outbursting objects, to view them from multiple perspectives, to obtain a spectroscopic time series of the outburst, and to establish accurate distances to the source event. We also describe the broader range of variable objects whose properties may be better understood from light echo observations. Finally, we discuss the prospects of new light echo techniques not yet realized in practice.
Light echoes, light from a variable source scattered off dust, have been observed for over a century. The recent discovery of light echoes around centuries-old supernovae in the Milky Way and the Large Magellanic Cloud have allowed the spectroscopic
For over a century, light echoes have been observed around variable stars and transients. The discovery of centuries-old light echoes from supernovae in the Large Magellanic Cloud has allowed the spectroscopic characterization of these events using m
We analyze a complete spectroscopic sample of galaxies ($sim$600,000 ) drawn from Sloan Digital Sky Survey (SDSS, DR7) to look for evidence of galactic winds in the local Universe. We focus on the shape of the [OIII]$lambda$5007 emission line as a tr
We present a measurement of the volumetric rate of `calcium-rich optical transients in the local universe, using a sample of three events from the Palomar Transient Factory (PTF). This measurement builds on a detailed study of the PTF transient detec
Due to their production sites, as well as to how they are processed and destroyed in stars, the light elements are excellent tools to investigate a number of crucial issues in modern astrophysics: from stellar structure and non-standard processes in