ترغب بنشر مسار تعليمي؟ اضغط هنا

Hierarchical structure and biomineralization in cricket tooth

52   0   0.0 ( 0 )
 نشر من قبل Xueqing Xing
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cricket is a truculent insect with stiff and sharp teeth as a fighting weapon. The structure and possible biomineralization of the cricket teeth are always interested. Synchrotron radiation X-ray fluorescence, X-ray diffraction and small angle X-ray scattering techniques were used to probe the element distribution, possible crystalline structures and size distribution of scatterers in cricket teeth. Scanning electron microscope was used to observe the nanoscaled structure. The results demonstrate that Zn is the main heavy element in cricket teeth. The surface of the cricket teeth has a crystalline compound like ZnFe2(AsO4)2(OH)2(H2O)4. While, the interior of the teeth has a crystalline compound like ZnCl2, which is from the biomineralization. The ZnCl2-like biomineral forms nanoscaled microfibrils and their axial direction points at the top of tooth cusp. The microfibrils aggregate random into intermediate filaments, forming a hierarchical structure. A sketch map of the cricket tooth cusp was proposed and a detailed discussion was given in this paper.

قيم البحث

اقرأ أيضاً

Synthetic biological macromolecule of magnetoferritin containing an iron oxide core inside a protein shell (apoferritin) is prepared with different content of iron. Its structure in aqueous solution is analyzed by small-angle synchrotron X-ray (SAXS) and neutron (SANS) scattering. The loading factor (LF) defined as the average number of iron atoms per protein is varied up to LF=800. With an increase of the LF, the scattering curves exhibit a relative increase in the total scattered intensity, a partial smearing and a shift of the match point in the SANS contrast variation data. The analysis shows an increase in the polydispersity of the proteins and a corresponding effective increase in the relative content of magnetic material against the protein moiety of the shell with the LF growth. At LFs above ~150, the apoferritin shell undergoes structural changes, which is strongly indicative of the fact that the shell stability is affected by iron oxide presence.
We study the space of all compact structures on a two-dimensional square lattice of size $N=6times6$. Each structure is mapped onto a vector in $N$-dimensions according to a hydrophobic model. Previous work has shown that the designabilities of struc tures are closely related to the distribution of the structure vectors in the $N$-dimensional space, with highly designable structures predominantly found in low density regions. We use principal component analysis to probe and characterize the distribution of structure vectors, and find a non-uniform density with a single peak. Interestingly, the principal axes of this peak are almost aligned with Fourier eigenvectors, and the corresponding Fourier eigenvalues go to zero continuously at the wave-number for alternating patterns ($q=pi$). These observations provide a stepping stone for an analytic description of the distribution of structural points, and open the possibility of estimating designabilities of realistic structures by simply Fourier transforming the hydrophobicities of the corresponding sequences.
Social hierarchy is central to decision-making in the coordinated movement of many swarming species. Here we propose a hierarchical swarm model in the spirit of the Vicsek model of self-propelled particles. We show that, as the hierarchy becomes impo rtant, the swarming transition changes from the weak first-order transition observed for egalitarian populations, to a stronger first-order transition for intermediately strong hierarchies, and finally the discontinuity reduces till vanish, where the order-disorder transition appears to be absent in the extremely despotic societies. Associated to this we observe that the spatial structure of the swarm, as measured by the correlation between the density and velocity fields, is strongly mediated by the hierarchy. A two-group model and vectorial noise are also studied for verification. Our results point out the particular relevance of the hierarchical structures to swarming transitions when doing specific case studies.
Lipid bilayers composed of non-alpha hydroxy sphingosine ceramide (CER NS), cholesterol (CHOL), and free fatty acids (FFA), which are components of the human skin barrier, are studied via molecular dynamics simulations. Since mixtures of these lipids exist in dense gel phases with little molecular mobility at physiological conditions, care must be taken to ensure that the simulations become decorrelated from the initial conditions. Thus, we propose and validate an equilibration protocol based on simulated tempering in which the simulation takes a random walk through temperature space, allowing the system to break out of metastable configurations and hence become decorrelated form its initial configuration. After validating the equilibration protocol, the effects of the lipid composition and ceramide tail length on bilayer properties are studied. Systems containing pure CER NS, CER NS + CHOL, and CER NS + CHOL + FFA, with the CER fatty acid tail length varied within each CER NS-CHOL-FFA composition, are simulated. The bilayer thickness is found to depend on the structure of the center of the bilayer, which arises as a result of the tail length asymmetry between the lipids studied. The hydrogen bonding between the lipid headgroups and with water is found to change with the overall lipid composition, but is mostly independent of the CER fatty acid tail length. Subtle differences in the lateral packing of the lipid tails are also found as a function of CER tail length. Overall, these results provide insight into the experimentally observed trend of altered barrier properties in skin systems where there are more ceramides with shorter tails present.
We introduce the concept of control centrality to quantify the ability of a single node to control a directed weighted network. We calculate the distribution of control centrality for several real networks and find that it is mainly determined by the networks degree distribution. We rigorously prove that in a directed network without loops the control centrality of a node is uniquely determined by its layer index or topological position in the underlying hierarchical structure of the network. Inspired by the deep relation between control centrality and hierarchical structure in a general directed network, we design an efficient attack strategy against the controllability of malicious networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا