ﻻ يوجد ملخص باللغة العربية
We study the dynamics of geometric measure of quantum discord (GMQD) under the influences of two local phase damping noises. Consider the two qubits initially in arbitrary X-states, we find the necessary and sufficient conditions for which GMQD is unaffected for a finite period. It is further shown that such results also hold for the non-Markovian dephasing process.
Among various definitions of quantum correlations, quantum discord has attracted considerable attention. To find analytical expression of quantum discord is an intractable task. Exact results are known only for very special states, namely, two-qubit
We investigate the geometric picture of the level surfaces of quantum entanglement and geometric measure of quantum discord (GMQD) of a class of X-states, respectively. This pictorial approach provides us a direct understanding of the structure of en
We discuss some properties of the quantum discord based on the geometric distance advanced by Dakic, Vedral, and Brukner [Phys. Rev. Lett. {bf 105}, 190502 (2010)], with emphasis on Werner- and MEM-states. We ascertain just how good the measure is in
Among various definitions of quantum correlations, quantum discord has attracted considerable attention. To find analytical expression of quantum discord is an intractable task. In this paper, we discuss thoroughly the case of two-qubit rank-two stat
We present an efficient method to solve the quantum discord of two-qubit X states exactly. A geometric picture is used to clarify whether and when the general POVM measurement is superior to von Neumann measurement. We show that either the von Neuman