ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphene on Rh(111): STM and AFM studies

319   0   0.0 ( 0 )
 نشر من قبل Yu. S. Dedkov
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic and crystallographic structure of the graphene/Rh(111) moire lattice is studied via combination of density-functional theory calculations and scanning tunneling and atomic force microscopy (STM and AFM). Whereas the principal contrast between hills and valleys observed in STM does not depend on the sign of applied bias voltage, the contrast in atomically resolved AFM images strongly depends on the frequency shift of the oscillating AFM tip. The obtained results demonstrate the perspectives of application atomic force microscopy/spectroscopy for the probing of the chemical contrast at the surface.



قيم البحث

اقرأ أيضاً

In this Letter, we present the first non-contact atomic force microscopy (nc-AFM) of a silicene on silver (Ag) surface, obtained by combining non-contact atomic force microscopy (nc-AFM) and scanning tunneling microscopy (STM). STM images over large areas of silicene grown on Ag(111) surface show both (sqrt13xsqrt13)R13.9{deg} and (4x4) superstructures. For the widely observed (4x4) structure, the nc-AFM topography shows an atomic-scale contrast inversion as the tip-surface distance is decreased. At the shortest tip-surface distance, the nc-AFM topography is very similar to the STM one. The observed structure in the nc-AFM topography is compatible with only one out of two silicon atoms being visible. This indicates unambiguously a strong buckling of the silicene honeycomb layer.
Graphene has demonstrated great promise for future electronics technology as well as fundamental physics applications because of its linear energy-momentum dispersion relations which cross at the Dirac point. However, accessing the physics of the low density region at the Dirac point has been difficult because of the presence of disorder which leaves the graphene with local microscopic electron and hole puddles, resulting in a finite density of carriers even at the charge neutrality point. Efforts have been made to reduce the disorder by suspending graphene, leading to fabrication challenges and delicate devices which make local spectroscopic measurements difficult. Recently, it has been shown that placing graphene on hexagonal boron nitride (hBN) yields improved device performance. In this letter, we use scanning tunneling microscopy to show that graphene conforms to hBN, as evidenced by the presence of Moire patterns in the topographic images. However, contrary to recent predictions, this conformation does not lead to a sizable band gap due to the misalignment of the lattices. Moreover, local spectroscopy measurements demonstrate that the electron-hole charge fluctuations are reduced by two orders of magnitude as compared to those on silicon oxide. This leads to charge fluctuations which are as small as in suspended graphene, opening up Dirac point physics to more diverse experiments than are possible on freestanding devices.
Using X-ray photoelectron spectroscopy, thermal desorption spectroscopy, and scanning tunneling microscopy we show that upon keV Xe + irradiation of graphene on Ir(111), Xe atoms are trapped under the graphene. Upon annealing, aggregation of Xe leads to graphene bulges and blisters. The efficient trapping is an unexpected and remarkable phenomenon, given the absence of chemical binding of Xe to Ir and to graphene, the weak interaction of a perfect graphene layer with Ir(111), as well as the substantial damage to graphene due to irradiation. By combining molecular dynamics simulations and density functional theory calculations with our experiments, we uncover the mechanism of trapping. We describe ways to avoid blister formation during graphene growth, and also demonstrate how ion implantation can be used to intentionally create blisters without introducing damage to the graphene layer. Our approach may provide a pathway to synthesize new materials at a substrate - 2D material interface or to enable confined reactions at high pressures and temperatures.
Single-crystalline transition metal films are ideal playing fields for the epitaxial growth of graphene and graphene-base materials. Graphene-silicon layered structures were successfully constructed on Ir(111) thin film on Si substrate with an yttria -stabilized zirconia buffer layer via intercalation approach. Such hetero-layered structures are compatible with current Si-based microelectronic technique, showing high promise for applications in future micro- and nano-electronic devices.
A nanorod structure has been observed on the Ho/Ge(111) surface using scanning tunneling microscopy (STM). The rods do not require patterning of the surface or defects such as step edges in order to grow as is the case for nanorods on Si(111). At low holmium coverage the nanorods exist as isolated nanostructures while at high coverage they form a periodic 5x1 structure. We propose a structural model for the 5x1 unit cell and show using an ab initio calculation that the STM profile of our model structure compares favorably to that obtained experimentally for both filled and empty states sampling. The calculated local density of states shows that the nanorod is metallic in character.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا