ﻻ يوجد ملخص باللغة العربية
Space-borne missions CoRoT and {it Kepler} are providing a rich harvest of high-quality constraints on solar-like pulsators. Among the seismic parameters, mode damping rates remains poorly understood and thus barely used to infer physical properties of stars. Nevertheless, thanks to CoRoT and {it Kepler} space-crafts it is now possible to measure damping rates for hundreds of main-sequence and thousands of red-giant stars with an unprecedented precision. By using a non-adiabatic pulsation code including a time-dependent convection treatment, we compute damping rates for stellar models representative for solar-like pulsators from the main-sequence to the red-giant phase. This allows us to reproduce the observations of both CoRoT and {it Kepler}, which validates our modeling of mode damping rates and thus the underlying physical mechanisms included in the modeling. Actually, by considering the perturbations of turbulent pressure and entropy (including perturbation of the dissipation rate of turbulent energy into heat) by the oscillation in our computation, we succeed in reproducing the observed relation between damping rates and effective temperature. Moreover, we discuss the physical reasons for mode damping rates to scale with effective temperature, as observationally exhibited. Finally, this opens the way for the use of mode damping rates to probe turbulent convection in solar-like stars.
The last decade has seen a rapid development in asteroseismology thanks to the CoRoT and Kepler missions. With more detailed asteroseismic observations available, it is becoming possible to infer exactly how oscillations are driven and dissipated in
Kepler short-cadence photometry of 2347 stars with effective temperatures in the range 6000-10000 K was used to search for the presence of solar-like oscillations. The aim is to establish the location of the hot end of the stochastic convective excit
The CoRoT mission is in its third year of observation and the data from the second long run in the galactic centre direction are being analysed. The solar-like oscillating stars that have been observed up to now have given some interesting results, s
Asteroseismology is a powerful tool that can precisely characterize the mass, radius, and other properties of field stars. However, our inability to properly model the near-surface layers of stars creates a frequency-dependent frequency difference be
Context: The F8 star HD 181906 (effective temperature ~6300K) was observed for 156 days by the CoRoT satellite during the first long run in the centre direction. Analysis of the data reveals a spectrum of solar-like acoustic oscillations. However, th