ترغب بنشر مسار تعليمي؟ اضغط هنا

Integrability on the Master Space

153   0   0.0 ( 0 )
 نشر من قبل Antonio Amariti
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It has been recently shown that every SCFT living on D3 branes at a toric Calabi-Yau singularity surprisingly also describes a complete integrable system. In this paper we use the Master Space as a bridge between the integrable system and the underlying field theory and we reinterpret the Poisson manifold of the integrable system in term of the geometry of the field theory moduli space.



قيم البحث

اقرأ أيضاً

We review some recents developments of the algebraic structures and spectral properties of non-Hermitian deformations of Calogero models. The behavior of such extensions is illustrated by the $A_2$ trigonometric and the $D_3$ angular Calogero models. Features like intertwining operators and conserved charges are discussed in terms of Dunkl operators. Hidden symmetries coming from the so-called algebraic integrability for integral values of the coupling are addressed together with a physical regularization of their action on the states by virtue of a $mathcal{PT}$-symmetry deformation.
We explore boundary scattering in the sine-Gordon model with a non-integrable family of Robin boundary conditions. The soliton content of the field after collision is analysed using a numerical implementation of the direct scattering problem associat ed with the inverse scattering method. We find that an antikink may be reflected into various combinations of an antikink, a kink, and one or more breathers, depending on the values of the initial antikink velocity and a parameter associated with the boundary condition. In addition we observe regions with an intricate resonance structure arising from the creation of an intermediate breather whose recollision with the boundary is highly dependent on the breather phase.
We briefly review the concepts of generalized zero curvature conditions and integrability in higher dimensions, where integrability in this context is related to the existence of infinitely many conservation laws. Under certain assumptions, it turns out that these conservation laws are, in fact, generated by a class of geometric target space transformations, namely the volume-preserving diffeomorphisms. We classify the possible conservation laws of field theories for the case of a three-dimensional target space. Further, we discuss some explicit examples.
We compute structure constants in N=4 SYM at one loop using Integrability. This requires having full control over the two loop eigenvectors of the dilatation operator for operators of arbitrary size. To achieve this, we develop an algebraic descripti on called the Theta-morphism. In this approach we introduce impurities at each spin chain site, act with particular differential operators on the standard algebraic Bethe ansatz vectors and generate in this way higher loop eigenvectors. The final results for the structure constants take a surprisingly simple form. For some quantities we conjecture all loop generalizations. These are based on the tree level and one loop patterns together and also on some higher loop experiments involving simple operators.
For the rational quantum Calogero systems of type $A_1{oplus}A_2$, $AD_3$ and $BC_3$, we explicitly present complete sets of independent conserved charges and their nonlinear algebras. Using intertwining (or shift) operators, we include the extra `od d charges appearing for integral couplings. Formulae for the energy eigenstates are used to tabulate the low-level wave functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا