ترغب بنشر مسار تعليمي؟ اضغط هنا

Breaking the Mode Degeneracy of Surface-Plasmon Resonances in a Triangular System

49   0   0.0 ( 0 )
 نشر من قبل Nahid Talebi
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we present a systematic investigation of symmetry-breaking in the plasmonic modes of triangular gold nanoprisms. Their geometrical C3 symmetry is one of the simplest possible that allows degeneracy in the particles mode spectrum. It is reduced to the non-degenerate symmetries Cv or E by positioning additional, smaller gold nanoprisms in close proximity, either in a lateral or a vertical configuration. Corresponding to the lower symmetry of the system, its eigenmodes also feature lower symmetries (Cv), or preserve only the identity (E) as symmetry. We discuss how breaking the symmetry of the plasmonic system not only breaks the degeneracy of some lower order modes, but also how it alters the damping and eigenenergies of the observed Fano-type resonances.

قيم البحث

اقرأ أيضاً

The detailed understanding of the physical parameters that determine Localized Surface Plasmon Resonances (LSPRs) is essential to develop new applications for plasmonics. A relatively new area of research has been opened by the identification of LSPR s in low carrier density systems obtained by doping semiconductor quantum dots. We investigate theoretically how diffuse surface scattering of electrons in combination with the effect of quantization due to size (QSE) impact the evolution of the LSPRs with the size of these nanosystems. Two key parameters are the length $R_0$ giving the strength of the QSE and the velocity $beta_T$ of the electronic excitations entering in the length scale for diffuse surface scattering. While the QSE itself only produces a blueshift in energy of the LSPRs, the diffuse surface scattering mechanism gives to both energy and linewidth an oscillatory-damped behavior as a function of size, with characteristic lengths that depend on material parameters. Thus, the evolution of the LSPRs with size at the nanometer scale is very dependent on the relation of size to these lengths, which we illustrate with several examples. The variety of behaviors we find could be useful for designing plasmonic devices based on doped semiconductor nano structures having desired properties.
The elastic response of suspended NbSe3 nanowires is studied across the charge density wave phase transition. The nanoscale dimensions of the resonator lead to a large resonant frequency (10-100 MHz), bringing the excited phonon frequency in close pr oximity of the plasmon mode of the electronic condensate - a parameter window not accessible in bulk systems. The interaction between the phonon and plasmon modes strongly modifies the elastic properties at high frequencies. This is manifested in the nanomechanics of the system as a sharp peak in the temperature dependence of the elastic modulus (relative change of 12.8%) in the charge density wave phase.
We present theoretical calculations for the absorption properties of protein-coated gold nanoparticles on graphene and graphite substrates. As the substrate is far away from nanoparticles, numerical results show that the number of protein bovine seru m molecules molecules aggregating on gold surfaces can be quantitatively determined for gold nanoparticles with arbitrary size by means of the Mie theory and the absorption spectra. The presence of graphitic substrate near protein-conjugated gold nanoparticles substantially enhances the red shift of the surface plasmon resonances of the nanoparticles. Our findings show that graphene and graphite provide the same absorption band when the distance between the nanoparticles and the substrate is large. However at shorter distances, the resonant wavelength peak of graphene-particle system differs from that of graphite-particle system. Furthermore, the influence of the chemical potential of graphene on the optical spectra is also investigated.
Carbon nanotubes provide a rare access point into the plasmon physics of one-dimensional electronic systems. By assembling purified nanotubes into uniformly sized arrays, we show that they support coherent plasmon resonances, that these plasmons enha nce and hybridize with phonons, and that the phonon-plasmon resonances have quality factors as high as 10. Because coherent nanotube plasmonics can strengthen light-matter interactions, it provides a compelling platform for surface-enhanced infrared spectroscopy and tunable, high-performance optical devices at the nanometer scale.
Zero mode waveguide (ZMW) nanoapertures efficiently confine the light down to the nanometer scale and overcome the diffraction limit in single molecule fluorescence analysis. However, unwanted adhesion of the fluorescent molecules on the ZMW surface can severely hamper the experiments. Therefore a proper surface passivation is required for ZMWs, but information is currently lacking on both the nature of the adhesion phenomenon and the optimization of the different passivation protocols. Here we monitor the influence of the fluorescent dye (Alexa Fluor 546 and 647, Atto 550 and 647N) on the non-specific adhesion of double stranded DNA molecule. We show that the nonspecific adhesion of DNA double strands onto the ZMW surface is directly mediated by the organic fluorescent dye being used, as Atto 550 and Atto 647N show a pronounced tendency to adhere to the ZMW while the Alexa Fluor 546 and 647 are remarkably free of this effect. Despite the small size of the fluorescent label, the surface charge and hydrophobicity of the dye appear to play a key role in promoting the DNA affinity for the ZMW surface. Next, different surface passivation methods (bovine serum albumin BSA, polyethylene glycol PEG, polyvinylphosphonic acid PVPA) are quantitatively benchmarked by fluorescence correlation spectroscopy to determine the most efficient approaches to prevent the adsorption of Atto 647N labeled DNA. Protocols using PVPA and PEG-silane of 1000 Da molar mass are found to drastically avoid the non-specific adsorption into ZMWs. Optimizing both the choice of the fluorescent dye and the surface passivation protocol are highly significant to expand the use of ZMWs for single molecule fluorescence applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا