ترغب بنشر مسار تعليمي؟ اضغط هنا

SGAS 143845.1+145407: A Big, Cool Starburst at Redshift 0.816

70   0   0.0 ( 0 )
 نشر من قبل Eva Wuyts
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the discovery and a detailed multi-wavelength study of a strongly-lensed luminous infrared galaxy at z=0.816. Unlike most known lensed galaxies discovered at optical or near-infrared wavelengths this lensed source is red, r-Ks = 3.9 [AB], which the data presented here demonstrate is due to ongoing dusty star formation. The overall lensing magnification (a factor of 17) facilitates observations from the blue optical through to 500micron, fully capturing both the stellar photospheric emission as well as the re-processed thermal dust emission. We also present optical and near-IR spectroscopy. These extensive data show that this lensed galaxy is in many ways typical of IR-detected sources at z~1, with both a total luminosity and size in accordance with other (albeit much less detailed) measurements in samples of galaxies observed in deep fields with the Spitzer telescope. Its far-infrared spectral energy distribution is well-fit by local templates that are an order of magnitude less luminous than the lensed galaxy; local templates of comparable luminosity are too hot to fit. Its size (D~7kpc) is much larger than local luminous infrared galaxies, but in line with sizes observed for such galaxies at z~1. The star formation appears uniform across this spatial scale. In this source, the luminosity of which is typical of sources that dominate the cosmic infrared background, we find that star formation is spatially extended and well organised, quite unlike the compact merger-driven starbursts which are typical for sources of this luminosity at z~0.

قيم البحث

اقرأ أيضاً

We present $Hubble Space Telescope$ ($HST$) imaging and grism spectroscopy of a strongly lensed LIRG at $z=0.816$, SGAS 143845.1$+$145407, and use the magnification boost of gravitational lensing to study the distribution of star formation throughout this galaxy. Based on the $HST$ imaging data, we create a lens model for this system; we compute the mass distribution and magnification map of the $z=0.237$ foreground lens. We find that the magnification of the lensed galaxy ranges between $2$ and $10$, with a total magnification (measured over all the images of the source) of $mu=11.8^{+4.6}_{-2.4}$. We find that the total projected mass density within $sim34$ kpc of the brightest cluster galaxy is $6.0^{+0.3}_{-0.7}times10^{12},M_{odot}$. Using the lens model we create a source reconstruction for SGAS 143845.1$+$145407, which paired with a faint detection of H$alpha$ in the grism spectroscopy, allows us to finally comment directly on the distribution of star formation in a $zsim1$ LIRG. We find widespread star formation across this galaxy, in agreement with the current understanding of these objects. However, we note a deficit of H$alpha$ emission in the nucleus of SGAS 143845.1$+$145407, likely due to dust extinction.
Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts - that is, increased rates of star formation - in the most massive dark matter halos at early epochs. However, it remains unknown how soon after the Big Bang such massive starburst progenitors exist. The measured redshift distribution of dusty, massive starbursts has long been suspected to be biased low in redshift owing to selection effects, as confirmed by recent findings of systems out to redshift z~5. Here we report the identification of a massive starburst galaxy at redshift 6.34 through a submillimeter color-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40% of the baryonic mass. A maximum starburst converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn of cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.
73 - N. Bouche 2013
Galaxies are thought to be fed by the continuous accretion of intergalactic gas, but direct observational evidence has been elusive. The accreted gas is expected to orbit about the galaxys halo, delivering not just fuel for star-formation but also an gular momentum to the galaxy, leading to distinct kinematic signatures. Here we report observations showing these distinct signatures near a typical distant star-forming galaxy where the gas is detected using a background quasar passing 26 kpc from the host. Our observations indicate that gas accretion plays a major role in galaxy growth since the estimated accretion rate is comparable to the star-formation rate.
71 - V. Smolcic , P. Capak , O. Ilbert 2011
Based on broad/narrow-band photometry and Keck DEIMOS spectroscopy we report a redshift of z=4.64-0.08+0.06 for AzTEC/COSMOS 1, the brightest sub-mm galaxy in the AzTEC/COSMOS field. In addition to the COSMOS-survey X-ray to radio data, we report obs ervations of the source with Herschel/PACS (100, 160 micron), CSO/SHARC II (350 micron), CARMA and PdBI (3 mm). We do not detect CO(5-4) line emission in the covered redshift ranges, 4.56-4.76 (PdBI/CARMA) and 4.94-5.02 (CARMA). If the line is within this bandwidth, this sets 3sigma upper limits on the gas mass to <~8x10^9 M_Sol and <~5x10^10 M_Sol, respectively (assuming similar conditions as observed in z~2 SMGs). This could be explained by a low CO-excitation in the source. Our analysis of the UV-IR spectral energy distribution of AzTEC 1 shows that it is an extremely young (<~50 Myr), massive (M*~10^11 M_Sol), but compact (<~2 kpc) galaxy forming stars at a rate of ~1300 M_Sol/yr. Our results imply that AzTEC 1 is forming stars in a gravitationally bound regime in which gravity prohibits the formation of a superwind, leading to matter accumulation within the galaxy and further generations of star formation.
We study the cool gas around a galaxy at z = 0.4729 using Keck/LRIS spectroscopy of a bright (B = 21.7) background galaxy at z = 0.6942 at a transverse distance of 16.5/h_70 kpc. The background galaxy spectrum reveals strong FeII, MgII, MgI, and CaII absorption at the redshift of the foreground galaxy, with a MgII 2796 rest equivalent width of 3.93 +/- 0.08 Angstroms, indicative of a velocity width exceeding 400 km/s. Because the background galaxy is large (> 4/h_70 kpc), the high covering fraction of the absorbing gas suggests that it arises in a spatially extended complex of cool clouds with large velocity dispersion. Spectroscopy of the massive (log M_*/M_sun = 11.15 +/- 0.08) host galaxy reveals that it experienced a burst of star formation about 1 Gyr ago and that it harbors a weak AGN. We discuss the possible origins of the cool gas in its halo, including multiphase cooling of hot halo gas, cold inflow, tidal interactions, and galactic winds. We conclude the absorbing gas was most likely ejected or tidally stripped from the interstellar medium of the host galaxy or its progenitors during the past starburst event. Adopting the latter interpretation, these results place one of only a few constraints on the radial extent of cool gas driven or stripped from a galaxy in the distant Universe. Future studies with integral field unit spectroscopy of spatially extended background galaxies will provide multiple sightlines through foreground absorbers and permit analysis of the morphology and kinematics of the gas surrounding galaxies with a diverse set of properties and environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا