ترغب بنشر مسار تعليمي؟ اضغط هنا

Loops formed by tidal tails as fossil records of a major merger

146   0   0.0 ( 0 )
 نشر من قبل Jianling Wang
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Wang




اسأل ChatGPT حول البحث

Many haloes of nearby disc galaxies contain faint and extended features, including loops, which are often interpreted as relics of satellite infall in the main galaxys potential well. In most cases, however, the residual nucleus of the satellite is not seen, although it is predicted by numerical simulations. We test whether such faint and extended features can be associated to gas-rich, major mergers, which may also lead to disc rebuilding and thus be a corner stone for the formation of spiral galaxies. Using the TreeSPH code GADGET-2, we model the formation of an almost bulge-less galaxy similar to NGC 5907 (B/T $le$ 0.2) after a gas-rich major merger. We indeed find that 3:1 major mergers can form features similar to the loops found in many galactic haloes, including in NGC 5907, and can reproduce an extended thin disc, a bulge, as well as the pronounced warp of the gaseous disc. Even though it remains difficult to fully cover the large volume of free parameters, the present modelling of the loops in NGC 5907 proves that they could well be the result of a major merger. It has many advantages over the satellite infall scenario; e.g., it solves the problem of the visibility of the satellite remnant, and it may explain some additional features in the NGC 5907 halo, as well as some gas properties of this system. For orbital parameters derived from cosmological simulations, the loops in NGC 5907 can be reproduced by major mergers (3:1 to 5:1) and possibly by intermediate mergers (5:1 to 12:1). The major merger scenario thus challenges the minor merger one and could explain many properties that haloes of spiral galaxies have in common, including their red colours and the presence of faint extended features.



قيم البحث

اقرأ أيضاً

274 - Matt S. Owers 2012
We identify four rare jellyfish galaxies in Hubble Space Telescope imagery of the major merger cluster Abell 2744. These galaxies harbor trails of star-forming knots and filaments which have formed in-situ in gas tails stripped from the parent galaxi es, indicating they are in the process of being transformed by the environment. Further evidence for rapid transformation in these galaxies comes from their optical spectra, which reveal starburst, poststarburst and AGN features. Most intriguingly, three of the jellyfish galaxies lie near ICM features associated with a merging Bullet-like subcluster and its shock front detected in Chandra X-ray images. We suggest that the high pressure merger environment may be responsible for the star formation in the gaseous tails. This provides observational evidence for the rapid transformation of galaxies during the violent core passage phase of a major cluster merger.
88 - P. Serra 2006
We present the result of radio and optical observations of the S0 galaxy IC 4200. We find that the galaxy hosts 8.5 billion solar masses of HI rotating on a ~90 deg warped disk extended out to 60 kpc from the centre of the galaxy. Optical spectroscop y reveals a simple-stellar-population-equivalent age of 1.5 Gyr in the centre of the galaxy and V- and R-band images show stellar shells. Ionised gas is observed within the stellar body and is kinematically decoupled from the stars and characterised by LINER-like line ratios.We interpret these observational results as evidence for a major merger origin of IC 4200, and date the merger back to 1-3 Gyr ago.
We present HST and UKIRT spectra and images of the 2 kpc binary quasar LBQS 0103-2753 (z=0.858). The HST images (V- and I-band) show tidal features demonstrating that this system is a major galaxy merger in progress. A two-color composite image bring s out knots of star formation along the tidal arc and elsewhere. The infrared spectrum shows that both objects are at the same redshift, and that the discrepant redshift of C IV in component A is a consequence of the BAL absorption in the spectrum of this component. LBQS 0103-2753 is one of the most closely spaced binary QSOs known, and is one of relatively few dual AGN showing confirmed broad emission lines from both components. While statistical studies of binary QSOs suggest that simultaneous fueling of both black holes during a merger may be relatively rare, LBQS 0103-2753 demonstrates that such fueling can occur at high luminosity at a late stage in the merger at nuclear spacing of only a few kpc, without severe obscuration of the nuclei.
Based on recent findings of a formation mechanism of substructure in tidal tails by Kuepper, Macleod & Heggie (2008) we investigate a more comprehensive set of N-body models of star clusters on orbits about a Milky-Way-like potential. We find that th e predicted epicyclic overdensities arise in any tidal tail no matter which orbit the cluster follows as long as the cluster lives long enough for the overdensities to build up. The distance of the overdensities along the tidal tail from the cluster centre depends for circular orbits only on the mass of the cluster and the strength of the tidal field, and therefore decreases monotonically with time, while for eccentric orbits the orbital motion influences the distance, causing a periodic compression and stretching of the tails and making the distance oscillate with time. We provide an approximation for estimating the distance of the overdensities in this case. We describe an additional type of overdensity which arises in extended tidal tails of clusters on eccentric orbits, when the acceleration of the tidal field on the stellar stream is no longer homogeneous. Moreover, we conclude that a pericentre passage or a disk shock is not the direct origin of an overdensity within a tidal tail. Escape due to such tidal perturbations does not take place immediately after the perturbation but is rather delayed and spread over the orbit of the cluster. All observable overdensities are therefore of the mentioned two types. In particular, we note that substructured tidal tails do not imply the existence of dark-matter sub-structures in the haloes of galaxies.
162 - C. Lopez-Sanjuan 2009
Aims: We study the major merger fraction in a SPITZER/IRAC-selected catalogue in the GOODS-S field up to z ~ 1 for luminosity- and mass-limited samples. Methods: We select disc-disc merger remnants on the basis of morphological asymmetries, and add ress three main sources of systematic errors: (i) we explicitly apply morphological K-corrections, (ii) we measure asymmetries in galaxies artificially redshifted to z_d = 1.0 to deal with loss of morphological information with redshift, and (iii) we take into account the observational errors in z and A, which tend to overestimate the merger fraction, though use of maximum likelihood techniques. Results: We obtain morphological merger fractions (f_m) below 0.06 up to z ~ 1. Parameterizing the merger fraction evolution with redshift as f_m(z) = f_m(0) (1+z)^m, we find that m = 1.8 +/- 0.5 for M_B <= -20 galaxies, while m = 5.4 +/- 0.4 for M_star >= 10^10 M_Sun galaxies. When we translate our merger fractions to merger rates (R_m), their evolution, parameterized as R_m(z) = R_m(0) (1+z)^n, is quite similar in both cases: n = 3.3 +/- 0.8 and n = 3.5 +/- 0.4, respectively. Conclusions: Our results imply that only ~8% of todays M_star >= 10^10 M_Sun galaxies have undergone a disc-disc major merger since z ~ 1. In addition, ~21% of this mass galaxies at z ~ 1 have undergone one of these mergers since z ~ 1.5. This suggests that disc-disc major mergers are not the dominant process in the evolution of M_star >= 10^10 M_Sun galaxies since z ~ 1, but may be an important process at z > 1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا