ﻻ يوجد ملخص باللغة العربية
The Nernst effect has recently proven a sensitive probe for detecting unusual normal state properties of unconventional superconductors. In particular, it may sensitively detect Fermi surface reconstructions which are connected to a charge or spin density wave (SDW) ordered state, and even fluctuating forms of such a state. Here we summarize recent results for the Nernst effect of the iron pnictide superconductor $rm LaO_{1-x}F_xFeAs$, whose ground state evolves upon doping from an itinerant SDW to a superconducting state, and the cuprate superconductor $rm La_{1.8-x}Eu_{0.2}Sr_xCuO_4$ which exhibits static stripe order as a ground state competing with the superconductivity. In $rm LaO_{1-x}F_xFeAs$, the SDW order leads to a huge Nernst response, which allows to detect even fluctuating SDW precursors at superconducting doping levels where long range SDW order is suppressed. This is in contrast to the impact of stripe order on the normal state Nernst effect in $rm La_{1.8-x}Eu_{0.2}Sr_xCuO_4$. Here, though signatures of the stripe order are detectable in the temperature dependence of the Nernst coefficient, its overall temperature dependence is very similar to that of $rm La_{2-x}Sr_xCuO_4$, where stripe order is absent. The anomalies which are induced by the stripe order are very subtle and the enhancement of the Nernst response due to static stripe order in $rm La_{1.8-x}Eu_{0.2}Sr_xCuO_4$ as compared to that of the pseudogap phase in $rm La_{2-x}Sr_xCuO_4$, if any, is very small.
When the Mott insulating state is suppressed by charge carrier doping, the pseudogap phenomenon emerges, where at the low-temperature limit, superconductivity coexists with some ordered electronic states. Within the framework of the kinetic-energy-dr
Charge-density-wave (CDW) correlations within the quintessential CuO$_2$ planes have been argued to either cause [1] or compete with [2] the superconductivity in the cuprates, and they might furthermore drive the Fermi-surface reconstruction in high
We use the Nernst effect to delineate the boundary of the pseudogap phase in the temperature-doping phase diagram of cuprate superconductors. New data for the Nernst coefficient $ u(T)$ of YBa$_{2}$Cu$_{3}$O$_{y}$ (YBCO), La$_{1.8-x}$Eu$_{0.2}$Sr$_x$
When passing through a phase transition, electronic system saves energy by opening energy gaps at the Fermi level. Delineating the energy gap anisotropy provides insights into the origin of the interactions that drive the phase transition. Here, we r
In iron-based superconductors, a spin-density-wave (SDW) magnetic order is suppressed with doping and unconventional superconductivity appears in close proximity to the SDW instability. The optical response of the SDW order shows clear gap features: