ﻻ يوجد ملخص باللغة العربية
Gravitational lensing surveys have now become large and precise enough that the interpretation of the lensing signal has to take into account an increasing number of theoretical limitations and observational biases. Since the lensing signal is the strongest at small angular scales, only numerical simulations can reproduce faithfully the non-linear dynamics and secondary effects at play. This work is the first of a series in which all gravitational lensing corrections known so far will be implemented in the same set of simulations, using realistic mock catalogues and non-Gaussian statistics. In this first paper, we present the TCS simulation suite and compute basic statistics such as the second and third order convergence and shear correlation functions. These simple tests set the range of validity of our simulations, which are resolving most of the signals at the sub-arc minute level (or $ell sim 10^4$). We also compute the non-Gaussian covariance matrix of several statistical estimators, including many that are used in the Canada France Hawaii Telescope Lensing Survey (CFHTLenS). From the same realizations, we construct halo catalogues, computing a series of properties that are required by most galaxy population algorithms. These simulation products are publicly available for download.
This paper is the first in a set that analyses the covariance matrices of clustering statistics obtained from several approximate methods for gravitational structure formation. We focus here on the covariance matrices of anisotropic two-point correla
(Abridged) We investigate and quantify the impact of finite simulation volume on weak lensing two- and four-point statistics. These {it finite support} (FS) effects are modelled for several estimators, simulation box sizes and source redshifts, and v
We compare the measurements of the bispectrum and the estimate of its covariance obtained from a set of different methods for the efficient generation of approximate dark matter halo catalogs to the same quantities obtained from full N-body simulatio
Upcoming weak lensing surveys will probe large fractions of the sky with unprecedented accuracy. To infer cosmological constraints, a large ensemble of survey simulations are required to accurately model cosmological observables and their covariances
We study the accuracy of several approximate methods for gravitational dynamics in terms of halo power spectrum multipoles and their estimated covariance matrix. We propagate the differences in covariances into parameter constrains related to growth