ﻻ يوجد ملخص باللغة العربية
Jets originating from the fragmentation of quarks and gluons are the most common, and complicated, final state objects produced at hadron colliders. A precise knowledge of their energy calibration is therefore of great importance at experiments at the Large Hadron Collider at CERN, while is very difficult to ascertain. We present in-situ techniques and results for the jet energy scale at ATLAS using recent collision data. ATLAS has demonstrated an understanding of the necessary jet energy corrections to within approx 4% in the central region of the calorimeter.
The DZERO detector is used to study proton-antiproton collisions at the 1800 GeV and 630 GeV center-of-mass energies available at the Fermilab Tevatron. To measure jets, the detector uses a sampling calorimeter composed of uranium and liquid argon as
We study the impact of new set of cuts, proposed in our previous works, on the improvement of accuracy of the jet energy calibration with p p ->photon+Jet+X process at LHC. Monte Carlo events produced by the PYTHIA 5.7 generator are used for this aim
The measurement of hadronic activity recoiling against W and Z vector bosons provides an important test of perturbative QCD, as well as a method of searching for new physics in a model independent fashion. We present a study of the cross-section rati
We present three measurements of the top quark mass in the lepton plus jets channel with 1.9 fb-1 of data using quantities with minimal dependence on the jet energy scale in the lepton plus jets channel at CDF. One measurement uses the mean transvers
The intrinsic performance of the ATLAS barrel and extended barrel calorimeters for the measurement of charged pions is presented. Pion energy scans (E = 20, 50, 200, 400 and 1000 GeV) at two pseudo-rapidity points ($eta$ = 0.3 and 1.3) and pseudorapi