ترغب بنشر مسار تعليمي؟ اضغط هنا

Note on scale invariance and self-similar evolution in (3+1)-dimensional signum-Gordon model

116   0   0.0 ( 0 )
 نشر من قبل Henryk Arodz
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Several classes of self-similar, spherically symmetric solutions of relativistic wave equation with nonlinear term of the form sign(phi) are presented. They are constructed from cubic polynomials in the scale invariant variable t/r. One class of solutions describes a process of wiping out the initial field, another an accumulation of field energy in a finite and growing region of space.



قيم البحث

اقرأ أيضاً

214 - H. Arodz , Z. Swierczynski 2011
We present a new class of oscillons in the (1+1)-dimensional signum-Gordon model. The oscillons periodically move to and fro in the space. They have finite total energy, finite size, and are strictly periodic in time. The corresponding solutions of t he scalar field equation are explicitly constructed from the second order polynomials in the time and position coordinates.
We present explicit solutions of the signum-Gordon scalar field equation which have finite energy and are periodic in time. Such oscillons have a strictly finite size. They do not emit radiation.
233 - Jakub Lis 2009
The regularized signum-Gordon potential has a smooth minimum and is linear in the modulus of the field value for higher amplitudes. The Q-ball solutions in this model are investigated. Their existence for charges large enough is demonstrated. In thre e dimensions numerical solutions are presented and the absolute stability of large Q-balls is proved. It is also shown, that the solutions of the regularized model approach uniformly the solution of the unregularized signum-Gordon model. From the stability of Q-balls in the regularized model follows the stability of the solutions in the original theory.
241 - M. Jimbo , T. Miwa , F. Smirnov 2011
Extending our previous construction in the sine-Gordon model, we show how to introduce two kinds of fermionic screening operators, in close analogy with conformal field theory with c<1.
We study Yang-Baxter deformations of the Nappi-Witten model with a prescription invented by Delduc, Magro and Vicedo. The deformations are specified by skew-symmetric classical $r$-matrices satisfying (modified) classical Yang-Baxter equations. We sh ow that the sigma-model metric is invariant under arbitrary deformations (while the coefficient of $B$-field is changed) by utilizing the most general classical $r$-matrix. Furthermore, the coefficient of $B$-field is determined to be the original value from the requirement that the one-loop $beta$-function should vanish. After all, the Nappi-Witten model is the unique conformal theory within the class of the Yang-Baxter deformations preserving the conformal invariance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا