ﻻ يوجد ملخص باللغة العربية
Several classes of self-similar, spherically symmetric solutions of relativistic wave equation with nonlinear term of the form sign(phi) are presented. They are constructed from cubic polynomials in the scale invariant variable t/r. One class of solutions describes a process of wiping out the initial field, another an accumulation of field energy in a finite and growing region of space.
We present a new class of oscillons in the (1+1)-dimensional signum-Gordon model. The oscillons periodically move to and fro in the space. They have finite total energy, finite size, and are strictly periodic in time. The corresponding solutions of t
We present explicit solutions of the signum-Gordon scalar field equation which have finite energy and are periodic in time. Such oscillons have a strictly finite size. They do not emit radiation.
The regularized signum-Gordon potential has a smooth minimum and is linear in the modulus of the field value for higher amplitudes. The Q-ball solutions in this model are investigated. Their existence for charges large enough is demonstrated. In thre
Extending our previous construction in the sine-Gordon model, we show how to introduce two kinds of fermionic screening operators, in close analogy with conformal field theory with c<1.
We study Yang-Baxter deformations of the Nappi-Witten model with a prescription invented by Delduc, Magro and Vicedo. The deformations are specified by skew-symmetric classical $r$-matrices satisfying (modified) classical Yang-Baxter equations. We sh