ﻻ يوجد ملخص باللغة العربية
Optically pumping high quality semiconductor microcavities allows for the spontaneous formation of polariton condensates, which can propagate over distances of many microns. Tightly focussed pump spots here are found to produce expanding incoherent bottleneck polaritons which coherently amplify the ballistic polaritons and lead to the formation of unusual ring condensates. This quantum liquid is found to form a remarkable sunflower-like spatial ripple pattern which arises from self interference with Rayleigh-scattered coherent polariton waves in the Cerenkov regime.
We examine the photoluminescence of highly-excited exciton-polariton condensates in semiconductor microcavities. Under strong pumping, exciton-polariton condensates have been observed to undergo a lasing transition where strong coupling between the e
We study driven-dissipative Bose-Einstein condensates in a two-mode Josephson system, such as a double-well potential, with asymmetrical pumping. We investigate nonlinear effects on the condensate populations and mode transitions. The generalized Gro
The quest to realise strongly interacting photons remains an outstanding challenge both for fundamental science and for applications. Here, we explore mediated photon-photon interactions in a highly imbalanced two-component mixture of exciton-polarit
We develop a theory for the dynamics of the density matrix describing a multimode polariton condensate. In such a condensate several single-particle orbitals become highly occupied, due to stimulated scattering from reservoirs of high-energy excitons
We show that the use of momentum-space optical interferometry, which avoids any spatial overlap between two parts of a macroscopic quantum state, presents a unique way to study coherence phenomena in polariton condensates. In this way, we address the