ﻻ يوجد ملخص باللغة العربية
In this paper, we give a construction of strongly regular Cayley graphs and a construction of skew Hadamard difference sets. Both constructions are based on choosing cyclotomic classes in finite fields, and they generalize the constructions given by Feng and Xiang cite{FX111,FX113}. Three infinite families of strongly regular graphs with new parameters are obtained. The main tools that we employed are index 2 Gauss sums, instead of cyclotomic numbers.
We revisit the old idea of constructing difference sets from cyclotomic classes. Two constructions of skew Hadamard difference sets are given in the additive groups of finite fields using unions of cyclotomic classes of order $N=2p_1^m$, where $p_1$
In this paper, we give a new lifting construction of hyperbolic type of strongly regular Cayley graphs. Also we give new constructions of strongly regular Cayley graphs over the additive groups of finite fields based on partitions of subdifference se
Davis and Jedwab (1997) established a great construction theory unifying many previously known constructions of difference sets, relative difference sets and divisible difference sets. They introduced the concept of building blocks, which played an i
We revisit the problem of constructing Menon-Hadamard difference sets. In 1997, Wilson and Xiang gave a general framework for constructing Menon-Hadamard difference sets by using a combination of a spread and four projective sets of type Q in ${mathr
We give a construction of strongly regular Cayley graphs on finite fields $F_q$ by using union of cyclotomic classes and index 4 Gauss sums. In particular, we obtain two infinite families of strongly regular graphs with new parameters.