ترغب بنشر مسار تعليمي؟ اضغط هنا

Soft X-ray harmonic comb from relativistic electron spikes

76   0   0.0 ( 0 )
 نشر من قبل Alexander Pirozhkov
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a new high-order harmonic generation mechanism reaching the `water window spectral region in experiments with multi-terawatt femtosecond lasers irradiating gas jets. A few hundred harmonic orders are resolved, giving uJ/sr pulses. Harmonics are collectively emitted by an oscillating electron spike formed at the joint of the boundaries of a cavity and bow wave created by a relativistically self-focusing laser in underdense plasma. The spike sharpness and stability are explained by catastrophe theory. The mechanism is corroborated by particle-in-cell simulations.

قيم البحث

اقرأ أيضاً

X-ray devices are far superior to optical ones for providing nanometre spatial and attosecond temporal resolutions. Such resolution is indispensable in biology, medicine, physics, material sciences, and their applications. A bright ultrafast coherent X-ray source is highly desirable, for example, for the diffractive imaging of individual large molecules, viruses, or cells. Here we demonstrate experimentally a new compact X-ray source involving high-order harmonics produced by a relativistic-irradiance femtosecond laser in a gas target. In our first implementation using a 9 Terawatt laser, coherent soft X-rays are emitted with a comb-like spectrum reaching the water window range. The generation mechanism is robust being based on phenomena inherent in relativistic laser plasmas: self-focusing, nonlinear wave generation accompanied by electron density singularities, and collective radiation by a compact electric charge. The formation of singularities (electron density spikes) is described by the elegant mathematical catastrophe theory, which explains sudden changes in various complex systems, from physics to social sciences. The new X-ray source has advantageous scalings, as the maximum harmonic order is proportional to the cube of the laser amplitude enhanced by relativistic self-focusing in plasma. This allows straightforward extension of the coherent X-ray generation to the keV and tens of keV spectral regions. The implemented X-ray source is remarkably easily accessible: the requirements for the laser can be met in a university-scale laboratory, the gas jet is a replenishable debris-free target, and the harmonics emanate directly from the gas jet without additional devices. Our results open the way to a compact coherent ultrashort brilliant X-ray source with single shot and high-repetition rate capabilities, suitable for numerous applications and diagnostics in many research fields.
The generation of relativistic attosecond electron bunches is observed in three-dimensional, relativistic particle-in-cell simulations of the interaction of intense laser light with droplets. The electron bunches are emitted under certain angles whic h depend on the ratios of droplet radius to wavelength and plasma frequency to laser frequency. The mechanism behind the multi-MeV attosecond electron bunch generation is investigated using Mie theory. It is shown that the angular distribution and the high electron energies are due to a parameter-sensitive, time-dependent local field enhancement at the droplet surface.
72 - A. Hoell , et al 2006
We propose a collective Thomson scattering experiment at the VUV free electron laser facility at DESY (FLASH) which aims to diagnose warm dense matter at near-solid density. The plasma region of interest marks the transition from an ideal plasma to a correlated and degenerate many-particle system and is of current interest, e.g. in ICF experiments or laboratory astrophysics. Plasma diagnostic of such plasmas is a longstanding issue. The collective electron plasma mode (plasmon) is revealed in a pump-probe scattering experiment using the high-brilliant radiation to probe the plasma. The distinctive scattering features allow to infer basic plasma properties. For plasmas in thermal equilibrium the electron density and temperature is determined from scattering off the plasmon mode.
We report the enhancement of individual harmonics generated at a relativistic ultra-steep plasma vacuum interface. Simulations show the harmonic emission to be due to the coupled action of two high velocity oscillations -- at the fundamental $omega_L $ and at the plasma frequency $omega_P$ of the bulk plasma. The synthesis of the enhanced harmonics can be described by the reflection of the incident laser pulse at a relativistic mirror oscillating at $omega_L$ and $omega_P$.
70 - W.J. Ma , J.H. Bin , H.Y. Wang 2014
Relativistic electrons are prodigious sources of photons. Beyond classical accelerators, ultra-intense laser interactions are of particular interest as they allow the coherent motion of relativistic electrons to be controlled and exploited as sources of radiation. Under extreme laser conditions theory predicts that isolated free relativistic electron sheets (FRES) can be produced and exploited for the production of a new class of radiation - unipolar extreme ultraviolet(XUV) pulses. However, the combination of extremely rapid rise-time and highest peak intensity in these simulations is still beyond current laser technology. We demonstrate a route to isolated FRES with existing lasers by exploiting relativistic transparency to produce an ultra-intense pulse with a steep rise time. When such an FRES interacts with a second, oblique target foil the electron sheet is rapidly accelerated (kicked). The radiation signature and simulations demonstrate that a single, nanometer thick FRES was produced. The experimental observations together with our theoretical modeling suggest the production of the first unipolar (half-cycle) pulse in the XUV - an achievement that has so far only been realized in the terahertz spectral domain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا