ﻻ يوجد ملخص باللغة العربية
We determine numerically the single-particle and the two-particle spectrum of the three-state quantum Potts model on a lattice by using the density matrix renormalization group method, and extract information on the asymptotic (small momentum) S-matrix of the quasiparticles. The low energy part of the finite size spectrum can be understood in terms of a simple effective model introduced in a previous work, and is consistent with an asymptotic S-matrix of an exchange form below a momentum scale $p^*$. This scale appears to vanish faster than the Compton scale, $mc$, as one approaches the critical point, suggesting that a dangerously irrelevant operator may be responsible for the behavior observed on the lattice.
A phenomenological approach to the ferromagnetic two dimensional Potts model on square lattice is proposed. Our goal is to present a simple functional form that obeys the known properties possessed by the free energy of the q-state Potts model. The d
The scaling limit of the spin cluster boundaries of the Ising model with domain wall boundary conditions is SLE with kappa=3. We hypothesise that the three-state Potts model with appropriate boundary conditions has spin cluster boundaries which are a
We perform a detailed investigation of the scaling Potts field theory using the truncated conformal space approach.
The surface and bulk properties of the two-dimensional Q > 4 state Potts model in the vicinity of the first order bulk transition point have been studied by exact calculations and by density matrix renormalization group techniques. For the surface tr
The scaling limit as T->0 of the antiferromagnetic three-state Potts model on the square lattice is described by the sine-Gordon quantum field theory at a specific value of the coupling. We show that the correspondence follows unambigously from an an