ترغب بنشر مسار تعليمي؟ اضغط هنا

Light Sensor Candidates for the Cherenkov Telescope Array

124   0   0.0 ( 0 )
 نشر من قبل Max Knoetig
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the characterization of candidate light sensors for use in the next-generation Imaging Atmospheric Cherenkov Telescope project called Cherenkov Telescope Array, a major astro-particle physics project of about 100 telescopes that is currently in the prototyping phase. Our goal is to develop with the manufacturers the best possible light sensors (highest photon detection efficiency, lowest crosstalk and afterpulsing). The cameras of those telescopes will be based on classical super-bi-alkali Photomultiplier tubes but also Silicon Photomultipliers are candidate light sensors. A full characterisation of selected sensors was done. We are working in close contact with several manufacturers, giving them feedback and suggesting improvements.



قيم البحث

اقرأ أيضاً

The Cherenkov Telescope Array (CTA) is a forthcoming ground-based observatory for very-high-energy gamma rays. CTA will consist of two arrays of imaging atmospheric Cherenkov telescopes in the Northern and Southern hemispheres, and will combine teles copes of different types to achieve unprecedented performance and energy coverage. The Gamma-ray Cherenkov Telescope (GCT) is one of the small-sized telescopes proposed for CTA to explore the energy range from a few TeV to hundreds of TeV with a field of view $gtrsim 8^circ$ and angular resolution of a few arcminutes. The GCT design features dual-mirror Schwarzschild-Couder optics and a compact camera based on densely-pixelated photodetectors as well as custom electronics. In this contribution we provide an overview of the GCT project with focus on prototype development and testing that is currently ongoing. We present results obtained during the first on-telescope campaign in late 2015 at the Observatoire de Paris-Meudon, during which we recorded the first Cherenkov images from atmospheric showers with the GCT multi-anode photomultiplier camera prototype. We also discuss the development of a second GCT camera prototype with silicon photomultipliers as photosensors, and plans toward a contribution to the realisation of CTA.
The Cherenkov Telescope Array, CTA, will be the major global observatory for very high energy gamma-ray astronomy over the next decade and beyond. The scientific potential of CTA is extremely broad: from understanding the role of relativistic cosmic particles to the search for dark matter. CTA is an explorer of the extreme universe, probing environments from the immediate neighbourhood of black holes to cosmic voids on the largest scales. Covering a huge range in photon energy from 20 GeV to 300 TeV, CTA will improve on all aspects of performance with respect to current instruments. The observatory will operate arrays on sites in both hemispheres to provide full sky coverage and will hence maximize the potential for the rarest phenomena such as very nearby supernovae, gamma-ray bursts or gravitational wave transients. With 99 telescopes on the southern site and 19 telescopes on the northern site, flexible operation will be possible, with sub-arrays available for specific tasks. CTA will have important synergies with many of the new generation of major astronomical and astroparticle observatories. Multi-wavelength and multi-messenger approaches combining CTA data with those from other instruments will lead to a deeper understanding of the broad-band non-thermal properties of target sources. The CTA Observatory will be operated as an open, proposal-driven observatory, with all data available on a public archive after a pre-defined proprietary period. Scientists from institutions worldwide have combined together to form the CTA Consortium. This Consortium has prepared a proposal for a Core Programme of highly motivated observations. The programme, encompassing approximately 40% of the available observing time over the first ten years of CTA operation, is made up of individual Key Science Projects (KSPs), which are presented in this document.
In this paper, the development of the dual mirror Small Size Telescopes (SST) for the Cherenkov Telescope Array (CTA) is reviewed. Up to 70 SST, with a primary mirror diameter of 4 m, will be produced and installed at the CTA southern site. These wil l allow investigation of the gamma-ray sky at the highest energies accessible to CTA, in the range from about 1 TeV to 300 TeV. The telescope presented in this contribution is characterized by two major innovations: the use of a dual mirror Schwarzschild-Couder configuration and of an innovative camera using as sensors either multi-anode photomultipliers (MAPM) or silicon photomultipliers (SiPM). The reduced plate-scale of the telescope, achieved with the dual-mirror optics, allows the camera to be compact (40 cm in diameter), and low-cost. The camera, which has about 2000 pixels of size 6x6 mm^2, covers a field of view of 10{deg}. The dual mirror telescopes and their cameras are being developed by three consortia, ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana, Italy/INAF), GATE (Gamma-ray Telescope Elements, France/Paris Observ.) and CHEC (Compact High Energy Camera, universities in UK, US and Japan) which are merging their efforts in order to finalize an end-to-end design that will be constructed for CTA. A number of prototype structures and cameras are being developed in order to investigate various alternative designs. In this contribution, these designs are presented, along with the technological solutions under study.
The CTA is the next generation of ground based very high energy gamma ray Imaging Atmospheric Cherenkov Telescopes. Since observations with this technique are affected by atmospheric conditions, an accurate knowledge of the atmospheric properties is fundamental to improve the precision and duty cycle of the CTA. Measurements of absorption and scattering properties of the atmosphere due to aerosols and molecules can be used in the event reconstruction or in MODTRAN, an analytical code designed to model the propagation of electromagnetic radiation. MODTRAN output is used as an input for the air shower simulation and Cherenkov light production, giving the optical depth profiles that together with the refractive index allow the proper simulation of the gamma ray induced signals and a correct measurement of the primary energy from the detected signals. The ARCADE Raman Lidar will be used for the on site characterization of the aerosol attenuation profiles of the UV light. The collected data will be used in preparation for the full operation of the array, providing nightly information about the aerosol properties such as the vertical aerosol optical depth and the water vapour mixing ratio with an altitude resolution better than 100 m from about 400 m to 10 km above ground level. These measurements will help to define the needs for Monte Carlo simulations of the shower development and of the detector response. This instrument will also be used for the intercalibration of the future Raman Lidars that are expected to operate at the CTA sites. This contribution includes a description of the ARCADE Lidar and the characterization of the performance of the system. The system is expected to be shipped to the northern site of the CTA (La Palma) before the end of 2017, to acquire data locally for 1 year before being moved to the southern site (Chile).
We have developed a prototype hexagonal light concentrator for the Large-Sized Telescopes of the Cherenkov Telescope Array. To maximize the photodetection efficiency of the focal-plane camera pixels for atmospheric Cherenkov photons and to lower the energy threshold, a specular film with a very high reflectance of 92-99% has been developed to cover the inner surfaces of the light concentrators. The prototype has a relative anode sensitivity (which can be roughly regarded as collection efficiency) of about 95 to 105% at the most important angles of incidence. The design, simulation, production procedure, and performance measurements of the light-concentrator prototype are reported.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا