ﻻ يوجد ملخص باللغة العربية
Interrelation between Thoms catastrophes and differential equations revisited. It is shown that versal deformations of critical points for singularities of A,D,E type are described by the systems of Hamilton-Jacobi type equations. For particular nonversal unfoldings the corresponding equations are equivalent to the integrable two-component hydrodynamic type systems like classical shallow water equation and dispersionless Toda system and others. Pecularity of such integrable systems is that the generating functions for corresponding hierarchies, which obey Euler-Poisson-Darboux equation, contain information about normal forms of higher order and higher corank singularities.
This note is designed to show some classes of differential-difference equations admitting Lax representation which generalize evolutionary equations known in the literature.
Recently, fractional differential equations have been investigated via the famous variational iteration method. However, all the previous works avoid the term of fractional derivative and handle them as a restricted variation. In order to overcome su
The equations of Loewner type can be derived in two very different contexts: one of them is complex analysis and the theory of parametric conformal maps and the other one is the theory of integrable systems. In this paper we compare the both approach
We investigate integrability of Euler-Lagrange equations associated with 2D second-order Lagrangians of the form begin{equation*} int f(u_{xx},u_{xy},u_{yy}) dxdy. end{equation*} By deriving integrability conditions for the Lagrangian density $f$, ex
We introduce two classes of discrete polynomials and construct discrete equations admitting a Lax representation in terms of these polynomials. Also we give an approach which allows to construct lattice integrable hierarchies in its explicit form and show some examples.