ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray and Multiwavelength Insights into the Nature of Weak Emission-Line Quasars at Low Redshift

94   0   0.0 ( 0 )
 نشر من قبل Jianfeng Wu
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridged) We report on the X-ray and multiwavelength properties of 11 radio-quiet quasars with weak or no emission lines identified by the Sloan Digital Sky Survey (SDSS) with redshift z=0.4-2.5. The distribution of relative X-ray brightness for our low-redshift weak-line quasar (WLQ) candidates is significantly different from that of typical radio-quiet quasars, having an excess of X-ray weak sources, but it is consistent with that of high-redshift WLQs. The X-ray weak sources generally show similar UV emission-line properties to those of the X-ray weak quasar PHL 1811; they may belong to the notable class of PHL 1811 analogs. The average X-ray spectrum of these sources is somewhat harder than that of typical radio-quiet quasars. Several other low-redshift WLQ candidates have normal ratios of X-ray-to-optical/UV flux, and their average X-ray spectral properties are also similar to those of typical radio-quiet quasars. The X-ray weak and X-ray normal WLQ candidates may belong to the same subset of quasars having high-ionization shielding gas covering most of the wind-dominated broad emission-line region, but be viewed at different inclinations. The mid-infrared-to-X-ray spectral energy distributions (SEDs) of these sources are generally consistent with those of typical SDSS quasars, showing that they are not likely to be BL Lac objects with relativistically boosted continua and diluted emission lines. However, one source in our X-ray observed sample is remarkably strong in X-rays, indicating that a small fraction of low-redshift WLQ candidates may actually be BL Lacs residing in the radio-faint tail of the BL Lac population. We also investigate universal selection criteria for WLQs over a wide range of redshift, finding that it is not possible to select WLQ candidates in a fully consistent way using different prominent emission lines as a function of redshift.

قيم البحث

اقرأ أيضاً

164 - Ohad Shemmer 2009
We present Chandra observations of nine high-redshift quasars (z=2.7-5.9) discovered by the Sloan Digital Sky Survey with weak or undetectable high-ionization emission lines in their UV spectra (WLQs). Adding archival X-ray observations of six additi onal sources of this class has enabled us to place the strongest constraints yet on the X-ray properties of this remarkable class of AGNs. Although our data cannot rule out the possibility that the emission lines are overwhelmed by a relativistically boosted continuum, as manifested by BL Lac objects, we find that WLQs are considerably weaker in the X-ray and radio bands than the majority of BL Lacs found at much lower redshifts. If WLQs are high-redshift BL Lacs, then it is difficult to explain the lack of a large parent population of X-ray and radio bright weak-lined sources at high redshift. We also consider the possibility that WLQs are quasars with extreme properties, and in particular that the emission lines are suppressed by high accretion rates. Using joint spectral fitting of the X-ray spectra of 11 WLQs we find that the mean photon index in the hard X-ray band is consistent with those observed in typical radio-quiet AGNs with no hint of an unusually steep hard-X-ray spectrum. This result poses a challenge to the hypothesis that WLQs have extremely high accretion rates, and we discuss additional observations required to test this idea.
We report on a population of X-ray weak quasars with similar UV emission-line properties to those of the remarkable quasar PHL 1811. All radio-quiet PHL 1811 analogs are notably X-ray weak by a mean factor of ~13, with hints of heavy X-ray absorption . Correlations between the X-ray weakness and UV emission-line properties suggest that PHL 1811 analogs may have extreme wind-dominated broad emission-line regions (BELRs). We propose an AGN geometry that can potentially unify the PHL 1811 analogs and the general population of weak-line quasars.
The nature of weak emission-line quasars (WLQs) is probed by comparing the Baldwin effect (BEff) in WLQs and normal quasars (QSOs). We selected 81 high-redshift (z>2.2) and 2 intermediate-redshift (z=1.66 and 1.89) WLQs. Their rest-frame equivalent w idths (EWs) of the C IV emission-line and their Eddington ratio were obtained from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7) Quasar Catalogue or from Diamond-Stanic et al. We compare the parameters of WLQs with these of 81 normal quasars from Bright Quasar Survey (BQS) and 155 radio-quiet and radio-intermediate quasars detected by SDSS and Chandra. The influence of the Eddington ratio, Lbol/Ledd, and the X-ray to optical luminosity ratio,alpha_ox, on the BEff is analysed. We find that WLQs follow a different relationship on the EW(CIV)-Lbol/Ledd plane than normal quasars. This relationship disagrees with the super-Eddington hypothesis. The weakness/absence of emission-lines in WLQs does not seem to be caused by their extremely soft ionizing continuum but by low covering factor (Omega) of their broad line region (BLR). Comparing emission-line intensities indicates that the ratios of high-ionization line and low-ionization line regions (i.e. Omega_(HIL)/Omega_(LIL)) are lower in WLQs than in normal QSOs. The covering factor of the regions producing C IV and Lyalpha emission-lines are similar in both WLQs and QSOs.
We present $Chandra$ observations of seven broad absorption line (BAL) quasars at $z=0.863$-2.516 with redshifted BAL troughs (RSBALs). Five of our seven targets were detected by $Chandra$ in 4-13 ks exposures with ACIS-S. The $alpha_{rm ox}$ values, $Deltaalpha_{rm ox}$ values, and spectral energy distributions of our targets demonstrate they are all X-ray weak relative to expectations for non-BAL quasars, and the degree of X-ray weakness is consistent with that of appropriately-matched BAL quasars generally. Furthermore, our five detected targets show evidence for hard X-ray spectral shapes with a stacked effective power-law photon index of $Gamma_{rm eff}=0.5^{+0.5}_{-0.4}$. These findings support the presence of heavy X-ray absorption ($N_{rm H}approx 2 times 10^{23}$ cm$^{-2}$) in RSBAL quasars, likely by the shielding gas found to be common in BAL quasars more generally. We use these X-ray measurements to assess models for the nature of RSBAL quasars, finding that a rotationally-dominated outflow model is favored while an infall model also remains plausible with some stipulations. The X-ray data disfavor a binary quasar model for RSBAL quasars in general.
We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z=0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z<1.3. However, their rest-frame 2 keV luminosi ties are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with <45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index ({Gamma}~1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (>33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا