ترغب بنشر مسار تعليمي؟ اضغط هنا

On a family of frames for Krein spaces

235   0   0.0 ( 0 )
 نشر من قبل Pedro Massey
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A definition of frames for Krein spaces is proposed, which extends the notion of $J$-orthonormal basis of Krein spaces. A $J$-frame for a Krein space $(HH, K{,}{,})$ is in particular a frame for $HH$ in the Hilbert space sense. But it is also compatible with the indefinite inner product $K{,}{,}$, meaning that it determines a pair of maximal uniformly $J$-definite subspaces with different positivity, an analogue to the maximal dual pair associated to a $J$-orthonormal basis. Also, each $J$-frame induces an indefinite reconstruction formula for the vectors in $HH$, which resembles the one given by a $J$-orthonormal basis.



قيم البحث

اقرأ أيضاً

Various norms can be defined on a Krein space by choosing different underlying fundamental decompositions. Some estimates of norms on Krein spaces are discussed and few results in Bognars paper are generalized.
Let $J$ and $R$ be anti-commuting fundamental symmetries in a Hilbert space $mathfrak{H}$. The operators $J$ and $R$ can be interpreted as basis (generating) elements of the complex Clifford algebra ${mathcal C}l_2(J,R):={span}{I, J, R, iJR}$. An arb itrary non-trivial fundamental symmetry from ${mathcal C}l_2(J,R)$ is determined by the formula $J_{vec{alpha}}=alpha_{1}J+alpha_{2}R+alpha_{3}iJR$, where ${vec{alpha}}inmathbb{S}^2$. Let $S$ be a symmetric operator that commutes with ${mathcal C}l_2(J,R)$. The purpose of this paper is to study the sets $Sigma_{{J_{vec{alpha}}}}$ ($forall{vec{alpha}}inmathbb{S}^2$) of self-adjoint extensions of $S$ in Krein spaces generated by fundamental symmetries ${{J_{vec{alpha}}}}$ (${{J_{vec{alpha}}}}$-self-adjoint extensions). We show that the sets $Sigma_{{J_{vec{alpha}}}}$ and $Sigma_{{J_{vec{beta}}}}$ are unitarily equivalent for different ${vec{alpha}}, {vec{beta}}inmathbb{S}^2$ and describe in detail the structure of operators $AinSigma_{{J_{vec{alpha}}}}$ with empty resolvent set.
Paley-Wiener theorem for frames for Hilbert spaces, Banach frames, Schauder frames and atomic decompositions for Banach spaces are known. In this paper, we derive Paley-Wiener theorem for p-approximate Schauder frames for separable Banach spaces. We show that our results give Paley-Wiener theorem for frames for Hilbert spaces.
Famous Naimark-Han-Larson dilation theorem for frames in Hilbert spaces states that every frame for a separable Hilbert space $mathcal{H}$ is image of a Riesz basis under an orthogonal projection from a separable Hilbert space $mathcal{H}_1$ which co ntains $mathcal{H}$ isometrically. In this paper, we derive dilation result for p-approximate Schauder frames for separable Banach spaces. Our result contains Naimark-Han-Larson dilation theorem as a particular case.
We develop a novel and unifying setting for phase retrieval problems that works in Banach spaces and for continuous frames and consider the questions of uniqueness and stability of the reconstruction from phaseless measurements. Our main result state s that also in this framework, the problem of phase retrieval is never uniformly stable in infinite dimensions. On the other hand, we show weak stability of the problem. This complements recent work [9], where it has been shown that phase retrieval is always unstable for the setting of discrete frames in Hilbert spaces. In particular, our result implies that the stability properties cannot be improved by oversampling the underlying discrete frame. We generalize the notion of complement property (CP) to the setting of continuous frames for Banach spaces (over $mathbb{K}=mathbb{R}$ or $mathbb{K}=mathbb{C}$) and verify that it is a necessary condition for uniqueness of the phase retrieval problem; when $mathbb{K}=mathbb{R}$ the CP is also sufficient for uniqueness. In our general setting, we also prove a conjecture posed by Bandeira et al. [5], which was originally formulated for finite-dimensional spaces: for the case $mathbb{K}=mathbb{C}$ the strong complement property (SCP) is a necessary condition for stability. To prove our main result, we show that the SCP can never hold for frames of infinite-dimensional Banach spaces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا