ترغب بنشر مسار تعليمي؟ اضغط هنا

The Determinacy of Context-Free Games

134   0   0.0 ( 0 )
 نشر من قبل Olivier Finkel
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Olivier Finkel




اسأل ChatGPT حول البحث

We prove that the determinacy of Gale-Stewart games whose winning sets are accepted by real-time 1-counter Buchi automata is equivalent to the determinacy of (effective) analytic Gale-Stewart games which is known to be a large cardinal assumption. We show also that the determinacy of Wadge games between two players in charge of omega-languages accepted by 1-counter Buchi automata is equivalent to the (effective) analytic Wadge determinacy. Using some results of set theory we prove that one can effectively construct a 1-counter Buchi automaton A and a Buchi automaton B such that: (1) There exists a model of ZFC in which Player 2 has a winning strategy in the Wadge game W(L(A), L(B)); (2) There exists a model of ZFC in which the Wadge game W(L(A), L(B)) is not determined. Moreover these are the only two possibilities, i.e. there are no models of ZFC in which Player 1 has a winning strategy in the Wadge game W(L(A), L(B)).



قيم البحث

اقرأ أيضاً

249 - Olivier Finkel 2013
We prove that the determinacy of Gale-Stewart games whose winning sets are accepted by real-time 1-counter Buchi automata is equivalent to the determinacy of (effective) analytic Gale-Stewart games which is known to be a large cardinal assumption. We show also that the determinacy of Wadge games between two players in charge of omega-languages accepted by 1-counter Buchi automata is equivalent to the (effective) analytic Wadge determinacy. Using some results of set theory we prove that one can effectively construct a 1-counter Buchi automaton A and a Buchi automaton B such that: (1) There exists a model of ZFC in which Player 2 has a winning strategy in the Wadge game W(L(A), L(B)); (2) There exists a model of ZFC in which the Wadge game W(L(A), L(B)) is not determined. Moreover these are the only two possibilities, i.e. there are no models of ZFC in which Player 1 has a winning strategy in the Wadge game W(L(A), L(B)).
We prove two determinacy and decidability results about two-players stochastic reachability games with partial observation on both sides and finitely many states, signals and actions.
Network games are widely used as a model for selfish resource-allocation problems. In the classical model, each player selects a path connecting her source and target vertices. The cost of traversing an edge depends on the {em load}; namely, number o f players that traverse it. Thus, it abstracts the fact that different users may use a resource at different times and for different durations, which plays an important role in determining the costs of the users in reality. For example, when transmitting packets in a communication network, routing traffic in a road network, or processing a task in a production system, actual sharing and congestion of resources crucially depends on time. In cite{AGK17}, we introduced {em timed network games}, which add a time component to network games. Each vertex $v$ in the network is associated with a cost function, mapping the load on $v$ to the price that a player pays for staying in $v$ for one time unit with this load. Each edge in the network is guarded by the time intervals in which it can be traversed, which forces the players to spend time in the vertices. In this work we significantly extend the way time can be referred to in timed network games. In the model we study, the network is equipped with {em clocks}, and, as in timed automata, edges are guarded by constraints on the values of the clocks, and their traversal may involve a reset of some clocks. We argue that the stronger model captures many realistic networks. The addition of clocks breaks the techniques we developed in cite{AGK17} and we develop new techniques in order to show that positive results on classic network games carry over to the stronger timed setting.
An average-time game is played on the infinite graph of configurations of a finite timed automaton. The two players, Min and Max, construct an infinite run of the automaton by taking turns to perform a timed transition. Player Min wants to minimise t he average time per transition and player Max wants to maximise it. A solution of average-time games is presented using a reduction to average-price game on a finite graph. A direct consequence is an elementary proof of determinacy for average-time games. This complements our results for reachability-time games and partially solves a problem posed by Bouyer et al., to design an algorithm for solving average-price games on priced timed automata. The paper also establishes the exact computational complexity of solving average-time games: the problem is EXPTIME-complete for timed automata with at least two clocks.
We generalise the hyperplane separation technique (Chatterjee and Velner, 2013) from multi-dimensional mean-payoff to energy games, and achieve an algorithm for solving the latter whose running time is exponential only in the dimension, but not in th e number of vertices of the game graph. This answers an open question whether energy games with arbitrary initial credit can be solved in pseudo-polynomial time for fixed dimensions 3 or larger (Chaloupka, 2013). It also improves the complexity of solving multi-dimensional energy games with given initial credit from non-elementary (Brazdil, Janv{c}ar, and Kuv{c}era, 2010) to 2EXPTIME, thus establishing their 2EXPTIME-completeness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا