ترغب بنشر مسار تعليمي؟ اضغط هنا

Role of the ferromagnetic component in the ferroelectricity of YMnO3

92   0   0.0 ( 0 )
 نشر من قبل Marie-Bernadette Lepetit
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We performed magnetic and ferroelectric measurements, first principle calculations and Landau theory analysis on hexagonal YMnO3. The polarization and the AFM order parameter were found to present different temperature dependence at TN. A linear coupling between these two order parameters is thus forbidden in the Landau theory and P63cm cannot be the magnetic group. The only compatible magnetic group is P63. In this group however, Landau theory predicts the possibility of a ferromagnetic component and of a linear coupling between the dielectric constant and the AFM order parameter. On one hand we performed dielectric constant measurements under magnetic field that clearly exhibit a metamagnetic transition, and thus confirm these predictions. On the other hand careful magnetization measurements show a small by non null FM component along the c-axis direction. Finally the Landau analysis within the P63 magnetic group shows that only the polarization square is coupled to the magnetic orders and thus neither the magnetization nor the AFM order can be reversed by an applied electric field.

قيم البحث

اقرأ أيضاً

We performed magnetic and ferroelectric measurements, associated with Landau theory and symmetry analysis, in order to clarify the situation of the YMnO3 system, a classical example of type I multiferroics. We found that the only magnetic group compa tible with all experimental data (neutrons scattering, magnetization,polarization, dielectric constant, second harmonic generation) is the P63 group. In this group a small ferromagnetic component along c is induced by the Dzyaloshinskii-Moriya interaction, and observed here in SQUID magnetization measurements. We found that the ferromagnetic and antiferromagnetic components can only be switched simultaneously, while the magnetic orders are functions of the polarization square and therefore insensitive to its sign.
72 - E. Szirmai , O. Legeza , 2008
The commensurate $p/q$-filled $n$-component Hubbard chain was investigated by bosonization and high-precision density-matrix renormalization-group analysis. It was found that depending on the relation between the number of components $n$, and the fil ling parameter $q$, the system shows metallic or insulating behavior, and for special fillings bond-ordered (dimerized, trimerized, tetramerized etc.) ground state develops in the insulating phase. A mean-field analysis shows that this bond ordering is a direct consequence of the spin-exchange interaction, which plays a crucial role in the one-parameter Hubbard model -- not only for infinite Coulomb repulsion, but for intermediate values as well.
101 - C. Toulouse , L. Chaix , J. Liu 2014
We used Raman and terahertz spectroscopies to investigate lattice and magnetic excitations and their cross-coupling in the hexagonal YMnO3 multiferroic. Two phonon modes are strongly affected by the magnetic order. Magnon excitations have been identi fied thanks to comparison with neutron measurements and spin wave calculations but no electromagnon has been observed. In addition, we evidenced two additional Raman active peaks. We have compared this observation with the anti-crossing between magnon and acoustic phonon branches measured by neutron. These optical measurements underly the unusual strong spin-phonon coupling.
Inspired by the experimental findings of an exotic ferromagnetic insulating state in LaMnO$_3$/SrTiO$_3$ heterostructures, we calculate the electronic and magnetic state of LaMnO$_3$/SrTiO$_3$ superlattices with comparable thicknesses employing ab-in itio dynamical mean-field theory. Projecting on the low-energy subspace of Mn $3d$ and Ti $3d$ states, and solving a multi-impurity problem, our approach emphasizes on local correlations at Mn and Ti sites. We find that a ferromagnetic insulating state emerges due to intrinsic effects of strong correlations in the system, in agreement with experimental studies. We also predict that, due to electronic correlations, the emerging 2D electron gas is located at the LMO side of the interface. This is in contrast to DFT results that locate the electron gas on the STO side. We estimate the transition temperature for the paramagnetic to ferromagnetic phase transition, which may be verified experimentally. Importantly, we also clarify that the epitaxial strain is a key ingredient for the emergence of the exotic ferromagnetic insulating state. This becomes clear from calculations on a strained LaMnO$_3$ system, also showing ferromagnetism which is not seen in the unstrained bulk material.
The magnetic structures which endow TbMnO$_3$ with its multiferroic properties have been reassessed on the basis of a comprehensive soft x-ray resonant scattering (XRS) study. The selectivity of XRS facilitated separation of the various contributions (Mn $L_2$ edge, Mn 3d moments; Tb M$_4$ edge, Tb 4f moments), while its variation with azimuth provided information on the moment direction of distinct Fourier components. When the data are combined with a detailed group theory analysis, a new picture emerges of the ferroelectric transition at 28 K. Instead of being driven by the transition from a collinear to a non-collinear magnetic structure, as has previously been supposed, it is shown to occur between two non-collinear structures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا